Adam
Adam (Adaptive moment estimation) is an adaptive learning rate optimizer, combining ideas from SGD
with momentum and RMSprop
to automatically scale the learning rate:
- a weighted average of the past gradients to provide direction (first-moment)
- a weighted average of the squared past gradients to adapt the learning rate to each parameter (second-moment)
bitsandbytes also supports paged optimizers which take advantage of CUDAs unified memory to transfer memory from the GPU to the CPU when GPU memory is exhausted.
Adam
class bitsandbytes.optim.Adam
< source >( params lr = 0.001 betas = (0.9, 0.999) eps = 1e-08 weight_decay = 0 amsgrad = False optim_bits = 32 args = None min_8bit_size = 4096 percentile_clipping = 100 block_wise = True is_paged = False )
__init__
< source >( params lr = 0.001 betas = (0.9, 0.999) eps = 1e-08 weight_decay = 0 amsgrad = False optim_bits = 32 args = None min_8bit_size = 4096 percentile_clipping = 100 block_wise = True is_paged = False )
Parameters
- params (
torch.tensor
) — The input parameters to optimize. - lr (
float
, defaults to 1e-3) — The learning rate. - betas (
tuple(float, float)
, defaults to (0.9, 0.999)) — The beta values are the decay rates of the first and second-order moment of the optimizer. - eps (
float
, defaults to 1e-8) — The epsilon value prevents division by zero in the optimizer. - weight_decay (
float
, defaults to 0.0) — The weight decay value for the optimizer. - amsgrad (
bool
, defaults toFalse
) — Whether to use the AMSGrad variant of Adam that uses the maximum of past squared gradients instead. - optim_bits (
int
, defaults to 32) — The number of bits of the optimizer state. - args (
dict
, defaults toNone
) — A dictionary with additional arguments. - min_8bit_size (
int
, defaults to 4096) — The minimum number of elements of the parameter tensors for 8-bit optimization. - percentile_clipping (
int
, defaults to 100) — Adapts clipping threshold automatically by tracking the last 100 gradient norms and clipping the gradient at a certain percentile to improve stability. - block_wise (
bool
, defaults toTrue
) — Whether to independently quantize each block of tensors to reduce outlier effects and improve stability. - is_paged (
bool
, defaults toFalse
) — Whether the optimizer is a paged optimizer or not.
Base Adam optimizer.
Adam8bit
class bitsandbytes.optim.Adam8bit
< source >( params lr = 0.001 betas = (0.9, 0.999) eps = 1e-08 weight_decay = 0 amsgrad = False optim_bits = 32 args = None min_8bit_size = 4096 percentile_clipping = 100 block_wise = True is_paged = False )
__init__
< source >( params lr = 0.001 betas = (0.9, 0.999) eps = 1e-08 weight_decay = 0 amsgrad = False optim_bits = 32 args = None min_8bit_size = 4096 percentile_clipping = 100 block_wise = True is_paged = False )
Parameters
- params (
torch.tensor
) — The input parameters to optimize. - lr (
float
, defaults to 1e-3) — The learning rate. - betas (
tuple(float, float)
, defaults to (0.9, 0.999)) — The beta values are the decay rates of the first and second-order moment of the optimizer. - eps (
float
, defaults to 1e-8) — The epsilon value prevents division by zero in the optimizer. - weight_decay (
float
, defaults to 0.0) — The weight decay value for the optimizer. - amsgrad (
bool
, defaults toFalse
) — Whether to use the AMSGrad variant of Adam that uses the maximum of past squared gradients instead. - optim_bits (
int
, defaults to 32) — The number of bits of the optimizer state. - args (
dict
, defaults toNone
) — A dictionary with additional arguments. - min_8bit_size (
int
, defaults to 4096) — The minimum number of elements of the parameter tensors for 8-bit optimization. - percentile_clipping (
int
, defaults to 100) — Adapts clipping threshold automatically by tracking the last 100 gradient norms and clipping the gradient at a certain percentile to improve stability. - block_wise (
bool
, defaults toTrue
) — Whether to independently quantize each block of tensors to reduce outlier effects and improve stability. - is_paged (
bool
, defaults toFalse
) — Whether the optimizer is a paged optimizer or not.
8-bit Adam optimizer.
Adam32bit
class bitsandbytes.optim.Adam32bit
< source >( params lr = 0.001 betas = (0.9, 0.999) eps = 1e-08 weight_decay = 0 amsgrad = False optim_bits = 32 args = None min_8bit_size = 4096 percentile_clipping = 100 block_wise = True is_paged = False )
__init__
< source >( params lr = 0.001 betas = (0.9, 0.999) eps = 1e-08 weight_decay = 0 amsgrad = False optim_bits = 32 args = None min_8bit_size = 4096 percentile_clipping = 100 block_wise = True is_paged = False )
Parameters
- params (
torch.tensor
) — The input parameters to optimize. - lr (
float
, defaults to 1e-3) — The learning rate. - betas (
tuple(float, float)
, defaults to (0.9, 0.999)) — The beta values are the decay rates of the first and second-order moment of the optimizer. - eps (
float
, defaults to 1e-8) — The epsilon value prevents division by zero in the optimizer. - weight_decay (
float
, defaults to 0.0) — The weight decay value for the optimizer. - amsgrad (
bool
, defaults toFalse
) — Whether to use the AMSGrad variant of Adam that uses the maximum of past squared gradients instead. - optim_bits (
int
, defaults to 32) — The number of bits of the optimizer state. - args (
dict
, defaults toNone
) — A dictionary with additional arguments. - min_8bit_size (
int
, defaults to 4096) — The minimum number of elements of the parameter tensors for 8-bit optimization. - percentile_clipping (
int
, defaults to 100) — Adapts clipping threshold automatically by tracking the last 100 gradient norms and clipping the gradient at a certain percentile to improve stability. - block_wise (
bool
, defaults toTrue
) — Whether to independently quantize each block of tensors to reduce outlier effects and improve stability. - is_paged (
bool
, defaults toFalse
) — Whether the optimizer is a paged optimizer or not.
32-bit Adam optimizer.
PagedAdam
class bitsandbytes.optim.PagedAdam
< source >( params lr = 0.001 betas = (0.9, 0.999) eps = 1e-08 weight_decay = 0 amsgrad = False optim_bits = 32 args = None min_8bit_size = 4096 percentile_clipping = 100 block_wise = True is_paged = False )
__init__
< source >( params lr = 0.001 betas = (0.9, 0.999) eps = 1e-08 weight_decay = 0 amsgrad = False optim_bits = 32 args = None min_8bit_size = 4096 percentile_clipping = 100 block_wise = True is_paged = False )
Parameters
- params (
torch.tensor
) — The input parameters to optimize. - lr (
float
, defaults to 1e-3) — The learning rate. - betas (
tuple(float, float)
, defaults to (0.9, 0.999)) — The beta values are the decay rates of the first and second-order moment of the optimizer. - eps (
float
, defaults to 1e-8) — The epsilon value prevents division by zero in the optimizer. - weight_decay (
float
, defaults to 0.0) — The weight decay value for the optimizer. - amsgrad (
bool
, defaults toFalse
) — Whether to use the AMSGrad variant of Adam that uses the maximum of past squared gradients instead. - optim_bits (
int
, defaults to 32) — The number of bits of the optimizer state. - args (
dict
, defaults toNone
) — A dictionary with additional arguments. - min_8bit_size (
int
, defaults to 4096) — The minimum number of elements of the parameter tensors for 8-bit optimization. - percentile_clipping (
int
, defaults to 100) — Adapts clipping threshold automatically by tracking the last 100 gradient norms and clipping the gradient at a certain percentile to improve stability. - block_wise (
bool
, defaults toTrue
) — Whether to independently quantize each block of tensors to reduce outlier effects and improve stability. - is_paged (
bool
, defaults toFalse
) — Whether the optimizer is a paged optimizer or not.
Paged Adam optimizer.
PagedAdam8bit
class bitsandbytes.optim.PagedAdam8bit
< source >( params lr = 0.001 betas = (0.9, 0.999) eps = 1e-08 weight_decay = 0 amsgrad = False optim_bits = 32 args = None min_8bit_size = 4096 percentile_clipping = 100 block_wise = True is_paged = False )
__init__
< source >( params lr = 0.001 betas = (0.9, 0.999) eps = 1e-08 weight_decay = 0 amsgrad = False optim_bits = 32 args = None min_8bit_size = 4096 percentile_clipping = 100 block_wise = True is_paged = False )
Parameters
- params (
torch.tensor
) — The input parameters to optimize. - lr (
float
, defaults to 1e-3) — The learning rate. - betas (
tuple(float, float)
, defaults to (0.9, 0.999)) — The beta values are the decay rates of the first and second-order moment of the optimizer. - eps (
float
, defaults to 1e-8) — The epsilon value prevents division by zero in the optimizer. - weight_decay (
float
, defaults to 0.0) — The weight decay value for the optimizer. - amsgrad (
bool
, defaults toFalse
) — Whether to use the AMSGrad variant of Adam that uses the maximum of past squared gradients instead. - optim_bits (
int
, defaults to 32) — The number of bits of the optimizer state. - args (
dict
, defaults toNone
) — A dictionary with additional arguments. - min_8bit_size (
int
, defaults to 4096) — The minimum number of elements of the parameter tensors for 8-bit optimization. - percentile_clipping (
int
, defaults to 100) — Adapts clipping threshold automatically by tracking the last 100 gradient norms and clipping the gradient at a certain percentile to improve stability. - block_wise (
bool
, defaults toTrue
) — Whether to independently quantize each block of tensors to reduce outlier effects and improve stability. - is_paged (
bool
, defaults toFalse
) — Whether the optimizer is a paged optimizer or not.
8-bit paged Adam optimizer.
PagedAdam32bit
class bitsandbytes.optim.PagedAdam32bit
< source >( params lr = 0.001 betas = (0.9, 0.999) eps = 1e-08 weight_decay = 0 amsgrad = False optim_bits = 32 args = None min_8bit_size = 4096 percentile_clipping = 100 block_wise = True is_paged = False )
__init__
< source >( params lr = 0.001 betas = (0.9, 0.999) eps = 1e-08 weight_decay = 0 amsgrad = False optim_bits = 32 args = None min_8bit_size = 4096 percentile_clipping = 100 block_wise = True is_paged = False )
Parameters
- params (
torch.tensor
) — The input parameters to optimize. - lr (
float
, defaults to 1e-3) — The learning rate. - betas (
tuple(float, float)
, defaults to (0.9, 0.999)) — The beta values are the decay rates of the first and second-order moment of the optimizer. - eps (
float
, defaults to 1e-8) — The epsilon value prevents division by zero in the optimizer. - weight_decay (
float
, defaults to 0.0) — The weight decay value for the optimizer. - amsgrad (
bool
, defaults toFalse
) — Whether to use the AMSGrad variant of Adam that uses the maximum of past squared gradients instead. - optim_bits (
int
, defaults to 32) — The number of bits of the optimizer state. - args (
dict
, defaults toNone
) — A dictionary with additional arguments. - min_8bit_size (
int
, defaults to 4096) — The minimum number of elements of the parameter tensors for 8-bit optimization. - percentile_clipping (
int
, defaults to 100) — Adapts clipping threshold automatically by tracking the last 100 gradient norms and clipping the gradient at a certain percentile to improve stability. - block_wise (
bool
, defaults toTrue
) — Whether to independently quantize each block of tensors to reduce outlier effects and improve stability. - is_paged (
bool
, defaults toFalse
) — Whether the optimizer is a paged optimizer or not.
Paged 32-bit Adam optimizer.