File size: 1,477 Bytes
ed4a837 12cd988 ed4a837 2cb20ea 12cd988 ed4a837 cbe700b c224b3f c93a982 c224b3f c93a982 c224b3f c93a982 ed4a837 ef36e39 ed4a837 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
language: en
license: apache-2.0
library_name: diffusers
tags: []
datasets: imagefolder
metrics: []
---
# ddpm-apes-128

## Model description
This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library
on the `imagefolder` dataset.
## Intended uses & limitations
#### How to use
```python
from diffusers import DDPMPipeline
import torch
model_id = "dn-gh/ddpm-apes-128"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# load model and scheduler
ddpm = DDPMPipeline.from_pretrained(model_id).to(device)
# run pipeline in inference
image = ddpm().images[0]
# save image
image.save("generated_image.png")
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training data
This model is trained on 4866 images generated with [ykilcher/apes](https://huggingface.co/ykilcher/apes) for 30 epochs.
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- gradient_accumulation_steps: 1
- optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None
- lr_scheduler: None
- lr_warmup_steps: 500
- ema_inv_gamma: None
- ema_inv_gamma: None
- ema_inv_gamma: None
- mixed_precision: fp16
### Training results
📈 [TensorBoard logs](https://huggingface.co/dn-gh/ddpm-apes-128/tensorboard?#scalars)
|