File size: 5,786 Bytes
9ca6f51
750b095
57aabc7
750b095
 
 
 
 
 
 
 
 
 
7683a91
57aabc7
750b095
 
 
 
 
 
 
57aabc7
 
6901507
9ca6f51
 
750b095
 
9ca6f51
750b095
9ca6f51
59ee130
 
6901507
 
9ca6f51
750b095
9ca6f51
5ab0210
9ca6f51
750b095
f3ce2c7
9ca6f51
750b095
9ca6f51
750b095
 
 
 
 
 
 
 
 
 
 
 
9ca6f51
750b095
9ca6f51
750b095
 
6901507
 
 
 
 
9ca6f51
 
750b095
9ca6f51
750b095
 
 
 
f3ce2c7
 
 
 
 
 
ad21e49
f3ce2c7
ad21e49
f3ce2c7
ad21e49
 
f3ce2c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad21e49
 
ace64ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b655a11
ace64ac
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
---
license: mit
base_model: facebook/w2v-bert-2.0
tags:
- generated_from_trainer
datasets:
- common_voice_7_0
metrics:
- wer
model-index:
- name: w2v-bert-2.0-luganda-CV-train-validation-7.0
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: common_voice_7_0
      type: common_voice_7_0
      config: lg
      split: test
      args: lg
    metrics:
    - name: Wer
      type: wer
      value: 0.1933150003273751
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# w2v-bert-2.0-luganda-CV-train-validation-7.0

This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the Luganda mozilla common voices 7.0 dataset. We use the train and validation set for training and the test set for evaluation.
When using this dataset, make sure that the audio has a sampling rate of 16kHz.It achieves the following results on the test set:
- Loss: 0.2282
- Wer: 0.1933

## Training and evaluation data

The model was trained on version 7 of the Luganda dataset of Mozilla common voices dataset. We used the train and validation set for training and the test dataset for validation. The [training script](https://github.com/MusinguziDenis/Luganda-ASR/blob/main/wav2vec/notebook/Fine_Tune_W2V2_BERT_on_CV7_Luganda.ipynb) was adapted from this [transformers repo](https://huggingface.co/blog/fine-tune-w2v2-bert).

## Training procedure
We trained the model on a 32 GB V100 GPU for 10 epochs using a learning rate of 5e-05. We used the AdamW optimizer. 

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.1859        | 1.89  | 300  | 0.2854          | 0.2866 |
| 0.1137        | 3.77  | 600  | 0.2503          | 0.2469 |
| 0.0712        | 5.66  | 900  | 0.2043          | 0.2092 |
| 0.0446        | 7.55  | 1200 | 0.2156          | 0.2005 |
| 0.0269        | 9.43  | 1500 | 0.2282          | 0.1933 |


### Framework versions

- Transformers 4.38.1
- Pytorch 2.2.1+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2

### Usage
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import AutoModelForCTC, Wav2Vec2BertProcessor

test_dataset = load_dataset("common_voice", "lg", split="test[:10]")

model = AutoModelForCTC.from_pretrained("dmusingu/w2v-bert-2.0-luganda-CV-train-validation-7.0")
processor = Wav2Vec2BertProcessor.from_pretrained("dmusingu/w2v-bert-2.0-luganda-CV-train-validation-7.0")

resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    batch["speech"] = resampler(speech_array).squeeze().numpy()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
    logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)

print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```

### Evaluation

The model can be evaluated as follows on the Luganda test dataset.

```python
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import AutoModelForCTC, Wav2Vec2BertProcessor
import re

test_dataset = load_dataset("common_voice", "lg", split="test")
wer = load_metric("wer")

model = AutoModelForCTC.from_pretrained("dmusingu/w2v-bert-2.0-luganda-CV-train-validation-7.0").to('cuda')
processor = Wav2Vec2BertProcessor.from_pretrained("dmusingu/w2v-bert-2.0-luganda-CV-train-validation-7.0")

chars_to_remove_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\'\»\«]'

test_dataset = test_dataset.cast_column("audio", Audio(sampling_rate=16_000))

def remove_special_characters(batch):
    # remove special characters
    batch["sentence"] = re.sub(chars_to_remove_regex, '', batch["sentence"]).lower()

    return batch

test_dataset = test_dataset.map(remove_special_characters)

def prepare_dataset(batch):
    audio = batch["audio"]
    batch["input_features"] = processor(audio["array"], sampling_rate=audio["sampling_rate"]).input_features[0]
    batch["input_length"] = len(batch["input_features"])

    batch["labels"] = processor(text=batch["sentence"]).input_ids
    return batch

test_dataset = test_dataset.map(prepare_dataset, remove_columns=test_dataset.column_names)

# Evaluation is carried out with a batch size of 1
def map_to_result(batch):
  with torch.no_grad():
    input_values = torch.tensor(batch["input_features"], device="cuda").unsqueeze(0)
    logits = model(input_values).logits

  pred_ids = torch.argmax(logits, dim=-1)
  batch["pred_str"] = processor.batch_decode(pred_ids)[0]
  batch["text"] = processor.decode(batch["labels"], group_tokens=False)

  return batch

results = test_dataset.map(map_to_result)

print("Test WER: {:.3f}".format(wer_metric.compute(predictions=results["pred_str"], references=results["text"])))
```

### Test Result: 19.33%