smolLM / README.md
dmariko's picture
SmolLM-360M-Instruct_fsdp_qlora_nf4_adapter
8ae41a6 verified
|
raw
history blame
2.56 kB
metadata
license: apache-2.0
library_name: peft
tags:
  - trl
  - sft
  - generated_from_trainer
base_model: HuggingFaceTB/SmolLM-360M-Instruct
datasets:
  - generator
model-index:
  - name: smolLM
    results: []

smolLM

This model is a fine-tuned version of HuggingFaceTB/SmolLM-360M-Instruct on the generator dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8076

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss
2.2932 0.9524 10 2.1445
2.105 2.0 21 2.0315
2.017 2.9524 31 1.9665
1.9535 4.0 42 1.9197
1.9104 4.9524 52 1.8906
1.888 6.0 63 1.8669
1.8552 6.9524 73 1.8511
1.8491 8.0 84 1.8384
1.8228 8.9524 94 1.8296
1.8198 10.0 105 1.8224
1.8073 10.9524 115 1.8173
1.7958 12.0 126 1.8131
1.7958 12.9524 136 1.8106
1.792 14.0 147 1.8088
1.7843 14.9524 157 1.8080
1.7873 16.0 168 1.8077
1.7848 16.9524 178 1.8077
1.7837 18.0 189 1.8076
1.7828 18.9524 199 1.8076
1.7827 19.0476 200 1.8076

Framework versions

  • PEFT 0.10.0
  • Transformers 4.40.0
  • Pytorch 2.1.0
  • Datasets 2.18.0
  • Tokenizers 0.19.1