File size: 2,562 Bytes
9935e82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ae41a6
9935e82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92556bb
302ca49
 
9935e82
 
302ca49
9935e82
302ca49
 
9935e82
0294ff1
9935e82
437c75e
9935e82
 
 
437c75e
 
8ae41a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9935e82
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
license: apache-2.0
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: HuggingFaceTB/SmolLM-360M-Instruct
datasets:
- generator
model-index:
- name: smolLM
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# smolLM

This model is a fine-tuned version of [HuggingFaceTB/SmolLM-360M-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM-360M-Instruct) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8076

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 20

### Training results

| Training Loss | Epoch   | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| 2.2932        | 0.9524  | 10   | 2.1445          |
| 2.105         | 2.0     | 21   | 2.0315          |
| 2.017         | 2.9524  | 31   | 1.9665          |
| 1.9535        | 4.0     | 42   | 1.9197          |
| 1.9104        | 4.9524  | 52   | 1.8906          |
| 1.888         | 6.0     | 63   | 1.8669          |
| 1.8552        | 6.9524  | 73   | 1.8511          |
| 1.8491        | 8.0     | 84   | 1.8384          |
| 1.8228        | 8.9524  | 94   | 1.8296          |
| 1.8198        | 10.0    | 105  | 1.8224          |
| 1.8073        | 10.9524 | 115  | 1.8173          |
| 1.7958        | 12.0    | 126  | 1.8131          |
| 1.7958        | 12.9524 | 136  | 1.8106          |
| 1.792         | 14.0    | 147  | 1.8088          |
| 1.7843        | 14.9524 | 157  | 1.8080          |
| 1.7873        | 16.0    | 168  | 1.8077          |
| 1.7848        | 16.9524 | 178  | 1.8077          |
| 1.7837        | 18.0    | 189  | 1.8076          |
| 1.7828        | 18.9524 | 199  | 1.8076          |
| 1.7827        | 19.0476 | 200  | 1.8076          |


### Framework versions

- PEFT 0.10.0
- Transformers 4.40.0
- Pytorch 2.1.0
- Datasets 2.18.0
- Tokenizers 0.19.1