File size: 15,816 Bytes
9b9c715 e154110 318370a e154110 318370a 9b9c715 08238e0 9b9c715 08238e0 9b9c715 e154110 9b9c715 8a2aca3 9b9c715 08238e0 9b9c715 08238e0 9b9c715 08238e0 9b9c715 08238e0 9b9c715 08238e0 9b9c715 08238e0 9b9c715 08238e0 9b9c715 08238e0 9b9c715 318370a 9b9c715 e154110 9b9c715 e154110 9b9c715 e154110 9b9c715 e154110 9b9c715 e154110 9b9c715 318370a e154110 9b9c715 e154110 9b9c715 318370a e154110 318370a e154110 318370a e154110 318370a e154110 318370a e154110 9b9c715 e154110 9b9c715 318370a e154110 9b9c715 318370a 9b9c715 318370a e154110 318370a e154110 9b9c715 318370a 9b9c715 e154110 9b9c715 e154110 9b9c715 318370a e154110 9b9c715 e154110 9b9c715 318370a e154110 9b9c715 318370a 9b9c715 e154110 9b9c715 318370a 9b9c715 e154110 318370a 9b9c715 e154110 9b9c715 318370a e154110 9b9c715 318370a 9b9c715 e154110 318370a e154110 9b9c715 e154110 9b9c715 2d0e2b6 e154110 9b9c715 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 |
# 1. engineer_style_foreign_style_vectors.py # for speed=1 & speed=4
# 2. tts_harvard.py # (call inside SHIFT repo - needs StyleTTS msinference.py)
# 3. visualize_tts_pleasantness.py # figures & audinterface
# Visualises timeseries 11 class for mimic3 human mimic3speed
#
#
# human_770.wav
# mimic3_770.wav
# mimic3_speedup_770.wav
FULL_WAV = [
'english_hfullh.wav',
'english_4x_hfullh.wav',
'human_hfullh.wav',
'foreign_hfullh.wav',
'foreign_4x_hfullh.wav',
]
WIN = 40
HOP = 10
import pandas as pd
import os
import json
import numpy as np
import audonnx
import audb
from pathlib import Path
import transformers
import torch
import audmodel
import audinterface
import matplotlib.pyplot as plt
import audiofile
LABELS = ['arousal', 'dominance', 'valence',
# 'speech_synthesizer', 'synthetic_singing',
'Angry',
'Sad',
'Happy',
'Surprise',
'Fear',
'Disgust',
'Contempt',
'Neutral'
]
config = transformers.Wav2Vec2Config() #finetuning_task='spef2feat_reg')
config.dev = torch.device('cuda:0')
config.dev2 = torch.device('cuda:0')
# def _softmax(x):
# '''x : (batch, num_class)'''
# x -= x.max(1, keepdims=True) # if all -400 then sum(exp(x)) = 0
# x = np.minimum(-100, x)
# x = np.exp(x)
# x /= x.sum(1, keepdims=True)
# return x
def _softmax(x):
'''x : (batch, num_class)'''
x -= x.max(1, keepdims=True) # if all -400 then sum(exp(x)) = 0
x = np.maximum(-100, x)
x = np.exp(x)
x /= x.sum(1, keepdims=True)
return x
def _sigmoid(x):
'''x : (batch, num_class)'''
return 1 / (1 + np.exp(-x))
# --
# ALL = anger, contempt, disgust, fear, happiness, neutral, no_agreement, other, sadness, surprise
# plot - unplesant emo 7x emo-categories [anger, contempt, disgust, fear, sadness] for artifical/sped-up/natural
# plot - pleasant emo [neutral, happiness, surprise]
# plot - Cubes Natural vs spedup 4x speed
# plot - synthesizer class audioset
# https://arxiv.org/pdf/2407.12229
# https://arxiv.org/pdf/2312.05187
# https://arxiv.org/abs/2407.05407
# https://arxiv.org/pdf/2408.06577
# https://arxiv.org/pdf/2309.07405
# wavs are generated concat and plot time-series?
# for mimic3/mimic3speed/human - concat all 77 and run timeseries with 7s hop 3s
for long_audio in FULL_WAV:
file_interface = f'timeseries_{long_audio.replace("/", "")}.pkl'
if not os.path.exists(file_interface):
print('_______________________________________\nProcessing\n', file_interface, '\n___________')
# CAT MSP
from transformers import AutoModelForAudioClassification
import types
def _infer(self, x):
'''x: (batch, audio-samples-16KHz)'''
x = (x + self.config.mean) / self.config.std # plus
x = self.ssl_model(x, attention_mask=None).last_hidden_state
# pool
h = self.pool_model.sap_linear(x).tanh()
w = torch.matmul(h, self.pool_model.attention)
w = w.softmax(1)
mu = (x * w).sum(1)
x = torch.cat(
[
mu,
((x * x * w).sum(1) - mu * mu).clamp(min=1e-7).sqrt()
], 1)
return self.ser_model(x)
teacher_cat = AutoModelForAudioClassification.from_pretrained(
'3loi/SER-Odyssey-Baseline-WavLM-Categorical-Attributes',
trust_remote_code=True # fun definitions see 3loi/SER-.. repo
).to(config.dev2).eval()
teacher_cat.forward = types.MethodType(_infer, teacher_cat)
# ===================[:]===================== Dawn
def _prenorm(x, attention_mask=None):
'''mean/var'''
if attention_mask is not None:
N = attention_mask.sum(1, keepdim=True) # here attn msk is unprocessed just the original input
x -= x.sum(1, keepdim=True) / N
var = (x * x).sum(1, keepdim=True) / N
else:
x -= x.mean(1, keepdim=True) # mean is an onnx operator reducemean saves some ops compared to casting integer N to float and the div
var = (x * x).mean(1, keepdim=True)
return x / torch.sqrt(var + 1e-7)
from torch import nn
from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2PreTrainedModel, Wav2Vec2Model
class RegressionHead(nn.Module):
r"""Classification head."""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.final_dropout)
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
def forward(self, features, **kwargs):
x = features
x = self.dropout(x)
x = self.dense(x)
x = torch.tanh(x)
x = self.dropout(x)
x = self.out_proj(x)
return x
class Dawn(Wav2Vec2PreTrainedModel):
r"""Speech emotion classifier."""
def __init__(self, config):
super().__init__(config)
self.config = config
self.wav2vec2 = Wav2Vec2Model(config)
self.classifier = RegressionHead(config)
self.init_weights()
def forward(
self,
input_values,
attention_mask=None,
):
x = _prenorm(input_values, attention_mask=attention_mask)
outputs = self.wav2vec2(x, attention_mask=attention_mask)
hidden_states = outputs[0]
hidden_states = torch.mean(hidden_states, dim=1)
logits = self.classifier(hidden_states)
return logits
# return {'hidden_states': hidden_states,
# 'logits': logits}
dawn = Dawn.from_pretrained('audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim').to(config.dev).eval()
# =======================================
def process_function(x, sampling_rate, idx):
'''run audioset ct, adv
USE onnx teachers
return [synth-speech, synth-singing, 7x, 3x adv] = 11
'''
# x = x[None , :] ASaHSuFDCN
#{0: 'Angry', 1: 'Sad', 2: 'Happy', 3: 'Surprise',
#4: 'Fear', 5: 'Disgust', 6: 'Contempt', 7: 'Neutral'}
#tensor([[0.0015, 0.3651, 0.0593, 0.0315, 0.0600, 0.0125, 0.0319, 0.4382]])
logits_cat = teacher_cat(torch.from_numpy(x).to(config.dev)).cpu().detach().numpy()
# USE ALL CATEGORIES
# --
# logits_audioset = audioset_model(x, 16000)['logits_sounds']
# logits_audioset = logits_audioset[:, [7, 35]] # speech synthesizer synthetic singing
# --
logits_adv = dawn(torch.from_numpy(x).to(config.dev)).cpu().detach().numpy() #['logits']
cat = np.concatenate([logits_adv,
# _sigmoid(logits_audioset),
_softmax(logits_cat)],
1)
print(cat)
return cat #logits_adv #model(signal, sampling_rate)['logits']
# ---------------------
interface = audinterface.Feature(
feature_names=LABELS,
process_func=process_function,
# process_func_args={'outputs': 'logits_scene'},
process_func_applies_sliding_window=False,
win_dur=WIN,
hop_dur=HOP,
sampling_rate=16000,
resample=True,
verbose=True,
)
df_pred = interface.process_file(long_audio)
df_pred.to_pickle(file_interface)
else:
print(file_interface, 'FOUND')
# df_pred = pd.read_pickle(file_interface)
# ===============================================================================
# V I S U A L S by loading all 3 pkl - mimic3 - speedup - human pd
#
# ===============================================================================
preds = {}
SHORTEST_PD = 100000 # segments
for long_audio in FULL_WAV:
file_interface = f'timeseries_{long_audio.replace("/", "")}.pkl'
y = pd.read_pickle(file_interface)
preds[long_audio] = y
SHORTEST_PD = min(SHORTEST_PD, len(y))
# clean indexes for plot
for k,v in preds.items():
p = v[:SHORTEST_PD] # TRuncate extra segments - human is slower than mimic3
# p = pd.read_pickle(student_file)
p.reset_index(inplace= True)
p.drop(columns=['file','start'], inplace=True)
p.set_index('end', inplace=True)
# p = p.filter(scene_classes) #['transport', 'indoor', 'outdoor'])
p.index = p.index.map(mapper = (lambda x: x.total_seconds()))
preds[k] = p
# print(p, '\n\n\n\n \n')
print(preds.keys(),'p')
# 2 PLOTS
for lang in ['english',
'foreign']:
fig, ax = plt.subplots(nrows=8, ncols=2, figsize=(24,20.7),
gridspec_kw={'hspace': 0, 'wspace': .04})
time_stamp = preds['human_hfullh.wav'].index.to_numpy()
for j, dim in enumerate(['arousal',
'dominance',
'valence']):
# MIMIC3
ax[j, 0].plot(time_stamp, preds[f'{lang}_hfullh.wav'][dim],
color=(0,104/255,139/255),
label='mean_1',
linewidth=2)
ax[j, 0].fill_between(time_stamp,
0*preds[f'{lang}_hfullh.wav'][dim],
preds['human_hfullh.wav'][dim],
color=(.2,.2,.2),
alpha=0.244)
if j == 0:
if lang == 'english':
desc = 'English'
else:
desc = 'Non-English'
ax[j, 0].legend([f'StyleTTS2 using Mimic-3 {desc}',
f'StyleTTS2 uising EmoDB'],
prop={'size': 14},
)
ax[j, 0].set_ylabel(dim.lower(), color=(.4, .4, .4), fontsize=17)
# TICK
ax[j, 0].set_ylim([1e-7, .9999])
# ax[j, 0].set_yticks([.25, .5,.75])
# ax[j, 0].set_yticklabels(['0.25', '.5', '0.75'])
ax[j, 0].set_xticklabels(['' for _ in ax[j, 0].get_xticklabels()])
ax[j, 0].set_xlim([time_stamp[0], time_stamp[-1]])
# MIMIC3 4x speed
ax[j, 1].plot(time_stamp, preds[f'{lang}_4x_hfullh.wav'][dim],
color=(0,104/255,139/255),
label='mean_1',
linewidth=2)
ax[j, 1].fill_between(time_stamp,
0 * preds[f'{lang}_4x_hfullh.wav'][dim],
preds['human_hfullh.wav'][dim],
color=(.2,.2,.2),
alpha=0.244)
if j == 0:
if lang == 'english':
desc = 'English'
else:
desc = 'Non-English'
ax[j, 1].legend([f'StyleTTS2 using Mimic-3 {desc} 4x speed',
f'StyleTTS2 using EmoDB'],
prop={'size': 14},
# loc='lower right'
)
ax[j, 1].set_xlabel('720 Harvard Sentences')
# TICK
ax[j, 1].set_ylim([1e-7, .9999])
# ax[j, 1].set_yticklabels(['' for _ in ax[j, 1].get_yticklabels()])
ax[j, 1].set_xticklabels(['' for _ in ax[j, 0].get_xticklabels()])
ax[j, 1].set_xlim([time_stamp[0], time_stamp[-1]])
ax[j, 0].grid()
ax[j, 1].grid()
# CATEGORIE
time_stamp = preds['human_hfullh.wav'].index.to_numpy()
for j, dim in enumerate(['Angry',
'Sad',
'Happy',
# 'Surprise',
'Fear',
'Disgust',
# 'Contempt',
# 'Neutral'
]): # ASaHSuFDCN
j = j + 3 # skip A/D/V suplt
# MIMIC3
ax[j, 0].plot(time_stamp, preds[f'{lang}_hfullh.wav'][dim],
color=(0,104/255,139/255),
label='mean_1',
linewidth=2)
ax[j, 0].fill_between(time_stamp,
0*preds[f'{lang}_hfullh.wav'][dim],
preds['human_hfullh.wav'][dim],
color=(.2,.2,.2),
alpha=0.244)
# ax[j, 0].legend(['StyleTTS2 style mimic3',
# 'StyleTTS2 style crema-d'],
# prop={'size': 10},
# # loc='upper left'
# )
ax[j, 0].set_ylabel(dim.lower(), color=(.4, .4, .4), fontsize=17)
# TICKS
ax[j, 0].set_ylim([1e-7, .9999])
ax[j, 0].set_xlim([time_stamp[0], time_stamp[-1]])
ax[j, 0].set_xticklabels(['' for _ in ax[j, 0].get_xticklabels()])
ax[j, 0].set_xlabel('720 Harvard Sentences', fontsize=17, color=(.2,.2,.2))
# MIMIC3 4x speed
ax[j, 1].plot(time_stamp, preds[f'{lang}_4x_hfullh.wav'][dim],
color=(0,104/255,139/255),
label='mean_1',
linewidth=2)
ax[j, 1].fill_between(time_stamp,
0*preds[f'{lang}_4x_hfullh.wav'][dim],
preds['human_hfullh.wav'][dim],
color=(.2,.2,.2),
alpha=0.244)
# ax[j, 1].legend(['StyleTTS2 style mimic3 4x speed',
# 'StyleTTS2 style crema-d'],
# prop={'size': 10},
# # loc='upper left'
# )
ax[j, 1].set_xlabel('720 Harvard Sentences', fontsize=17, color=(.2,.2,.2))
ax[j, 1].set_ylim([1e-7, .9999])
# ax[j, 1].set_yticklabels(['' for _ in ax[j, 1].get_yticklabels()])
ax[j, 1].set_xticklabels(['' for _ in ax[j, 1].get_xticklabels()])
ax[j, 1].set_xlim([time_stamp[0], time_stamp[-1]])
ax[j, 0].grid()
ax[j, 1].grid()
plt.savefig(f'fig_{lang}_{WIN=}_{HOP=}_HFdisc.png', bbox_inches='tight')
plt.close()
|