File size: 29,302 Bytes
d72b2c3 531e776 d72b2c3 06aa0fc d72b2c3 531e776 d72b2c3 531e776 d72b2c3 531e776 d72b2c3 531e776 d72b2c3 531e776 d72b2c3 531e776 d72b2c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from collections import defaultdict
from copy import deepcopy
from dataclasses import dataclass, field
from itertools import chain
import logging
import math
from pathlib import Path
import random
import re
import typing as tp
import warnings
import soundfile
import einops
from num2words import num2words
import spacy
from transformers import T5EncoderModel, T5Tokenizer # type: ignore
import torch
from torch import nn
import torch.nn.functional as F
from torch.nn.utils.rnn import pad_sequence
from .streaming import StreamingModule
from .streaming import StreamingModule
from .transformer import create_sin_embedding
from .quantization import ResidualVectorQuantizer
from .utils.autocast import TorchAutocast
from .utils.cache import EmbeddingCache
from .utils.utils import collate, hash_trick, length_to_mask, load_clap_state_dict, warn_once
logger = logging.getLogger(__name__)
TextCondition = tp.Optional[str] # a text condition can be a string or None (if doesn't exist)
ConditionType = tp.Tuple[torch.Tensor, torch.Tensor] # condition, mask
class WavCondition(tp.NamedTuple):
wav: torch.Tensor
length: torch.Tensor
sample_rate: tp.List[int]
path: tp.List[tp.Optional[str]] = []
seek_time: tp.List[tp.Optional[float]] = []
class JointEmbedCondition(tp.NamedTuple):
wav: torch.Tensor
text: tp.List[tp.Optional[str]]
length: torch.Tensor
sample_rate: tp.List[int]
path: tp.List[tp.Optional[str]] = []
seek_time: tp.List[tp.Optional[float]] = []
@dataclass
class ConditioningAttributes:
text: tp.Dict[str, tp.Optional[str]] = field(default_factory=dict)
wav: tp.Dict[str, WavCondition] = field(default_factory=dict)
joint_embed: tp.Dict[str, JointEmbedCondition] = field(default_factory=dict)
def __getitem__(self, item):
return getattr(self, item)
@property
def text_attributes(self):
return self.text.keys()
@property
def wav_attributes(self):
return self.wav.keys()
@property
def joint_embed_attributes(self):
return self.joint_embed.keys()
@property
def attributes(self):
return {
"text": self.text_attributes,
"wav": self.wav_attributes,
"joint_embed": self.joint_embed_attributes,
}
def to_flat_dict(self):
return {
**{f"text.{k}": v for k, v in self.text.items()},
**{f"wav.{k}": v for k, v in self.wav.items()},
**{f"joint_embed.{k}": v for k, v in self.joint_embed.items()}
}
@classmethod
def from_flat_dict(cls, x):
out = cls()
for k, v in x.items():
kind, att = k.split(".")
out[kind][att] = v
return out
def nullify_condition(condition: ConditionType, dim: int = 1):
"""Transform an input condition to a null condition.
The way it is done by converting it to a single zero vector similarly
to how it is done inside WhiteSpaceTokenizer and NoopTokenizer.
Args:
condition (ConditionType): A tuple of condition and mask (tuple[torch.Tensor, torch.Tensor])
dim (int): The dimension that will be truncated (should be the time dimension)
WARNING!: dim should not be the batch dimension!
Returns:
ConditionType: A tuple of null condition and mask
"""
assert dim != 0, "dim cannot be the batch dimension!"
assert isinstance(condition, tuple) and \
isinstance(condition[0], torch.Tensor) and \
isinstance(condition[1], torch.Tensor), "'nullify_condition' got an unexpected input type!"
cond, mask = condition
B = cond.shape[0]
last_dim = cond.dim() - 1
out = cond.transpose(dim, last_dim)
out = 0. * out[..., :1]
out = out.transpose(dim, last_dim)
mask = torch.zeros((B, 1), device=out.device).int()
assert cond.dim() == out.dim()
return out, mask
def nullify_wav(cond: WavCondition) -> WavCondition:
"""Transform a WavCondition to a nullified WavCondition.
It replaces the wav by a null tensor, forces its length to 0, and replaces metadata by dummy attributes.
Args:
cond (WavCondition): Wav condition with wav, tensor of shape [B, T].
Returns:
WavCondition: Nullified wav condition.
"""
null_wav, _ = nullify_condition((cond.wav, torch.zeros_like(cond.wav)), dim=cond.wav.dim() - 1)
return WavCondition(
wav=null_wav,
length=torch.tensor([0] * cond.wav.shape[0], device=cond.wav.device),
sample_rate=cond.sample_rate,
path=[None] * cond.wav.shape[0],
seek_time=[None] * cond.wav.shape[0],
)
def nullify_joint_embed(embed: JointEmbedCondition) -> JointEmbedCondition:
"""Nullify the joint embedding condition by replacing it by a null tensor, forcing its length to 0,
and replacing metadata by dummy attributes.
Args:
cond (JointEmbedCondition): Joint embedding condition with wav and text, wav tensor of shape [B, C, T].
"""
null_wav, _ = nullify_condition((embed.wav, torch.zeros_like(embed.wav)), dim=embed.wav.dim() - 1)
return JointEmbedCondition(
wav=null_wav, text=[None] * len(embed.text),
length=torch.LongTensor([0]).to(embed.wav.device),
sample_rate=embed.sample_rate,
path=[None] * embed.wav.shape[0],
seek_time=[0] * embed.wav.shape[0],
)
class Tokenizer:
"""Base tokenizer implementation
(in case we want to introduce more advances tokenizers in the future).
"""
def __call__(self, texts: tp.List[tp.Optional[str]]) -> tp.Tuple[torch.Tensor, torch.Tensor]:
raise NotImplementedError()
class WhiteSpaceTokenizer(Tokenizer):
"""This tokenizer should be used for natural language descriptions.
For example:
["he didn't, know he's going home.", 'shorter sentence'] =>
[[78, 62, 31, 4, 78, 25, 19, 34],
[59, 77, 0, 0, 0, 0, 0, 0]]
"""
PUNCTUATION = "?:!.,;"
def __init__(self, n_bins: int, pad_idx: int = 0, language: str = "en_core_web_sm",
lemma: bool = True, stopwords: bool = True) -> None:
self.n_bins = n_bins
self.pad_idx = pad_idx
self.lemma = lemma
self.stopwords = stopwords
try:
self.nlp = spacy.load(language)
except IOError:
spacy.cli.download(language) # type: ignore
self.nlp = spacy.load(language)
@tp.no_type_check
def __call__(self, texts: tp.List[tp.Optional[str]],
return_text: bool = False) -> tp.Tuple[torch.Tensor, torch.Tensor]:
"""Take a list of strings and convert them to a tensor of indices.
Args:
texts (list[str]): List of strings.
return_text (bool, optional): Whether to return text as additional tuple item. Defaults to False.
Returns:
tuple[torch.Tensor, torch.Tensor]:
- Indices of words in the LUT.
- And a mask indicating where the padding tokens are
"""
output, lengths = [], []
texts = deepcopy(texts)
for i, text in enumerate(texts):
# if current sample doesn't have a certain attribute, replace with pad token
if text is None:
output.append(torch.Tensor([self.pad_idx]))
lengths.append(0)
continue
# convert numbers to words
text = re.sub(r"(\d+)", lambda x: num2words(int(x.group(0))), text) # type: ignore
# normalize text
text = self.nlp(text) # type: ignore
# remove stopwords
if self.stopwords:
text = [w for w in text if not w.is_stop] # type: ignore
# remove punctuation
text = [w for w in text if w.text not in self.PUNCTUATION] # type: ignore
# lemmatize if needed
text = [getattr(t, "lemma_" if self.lemma else "text") for t in text] # type: ignore
texts[i] = " ".join(text)
lengths.append(len(text))
# convert to tensor
tokens = torch.Tensor([hash_trick(w, self.n_bins) for w in text])
output.append(tokens)
mask = length_to_mask(torch.IntTensor(lengths)).int()
padded_output = pad_sequence(output, padding_value=self.pad_idx).int().t()
if return_text:
return padded_output, mask, texts # type: ignore
return padded_output, mask
class NoopTokenizer(Tokenizer):
"""This tokenizer should be used for global conditioners such as: artist, genre, key, etc.
The difference between this and WhiteSpaceTokenizer is that NoopTokenizer does not split
strings, so "Jeff Buckley" will get it's own index. Whereas WhiteSpaceTokenizer will
split it to ["Jeff", "Buckley"] and return an index per word.
For example:
["Queen", "ABBA", "Jeff Buckley"] => [43, 55, 101]
["Metal", "Rock", "Classical"] => [0, 223, 51]
"""
def __init__(self, n_bins: int, pad_idx: int = 0):
self.n_bins = n_bins
self.pad_idx = pad_idx
def __call__(self, texts: tp.List[tp.Optional[str]]) -> tp.Tuple[torch.Tensor, torch.Tensor]:
output, lengths = [], []
for text in texts:
# if current sample doesn't have a certain attribute, replace with pad token
if text is None:
output.append(self.pad_idx)
lengths.append(0)
else:
output.append(hash_trick(text, self.n_bins))
lengths.append(1)
tokens = torch.LongTensor(output).unsqueeze(1)
mask = length_to_mask(torch.IntTensor(lengths)).int()
return tokens, mask
class BaseConditioner(nn.Module):
"""Base model for all conditioner modules.
We allow the output dim to be different than the hidden dim for two reasons:
1) keep our LUTs small when the vocab is large;
2) make all condition dims consistent.
Args:
dim (int): Hidden dim of the model.
output_dim (int): Output dim of the conditioner.
"""
def __init__(self, dim: int, output_dim: int):
super().__init__()
self.dim = dim
self.output_dim = output_dim
self.output_proj = nn.Linear(dim, output_dim)
def tokenize(self, *args, **kwargs) -> tp.Any:
"""Should be any part of the processing that will lead to a synchronization
point, e.g. BPE tokenization with transfer to the GPU.
The returned value will be saved and return later when calling forward().
"""
raise NotImplementedError()
def forward(self, inputs: tp.Any) -> ConditionType:
"""Gets input that should be used as conditioning (e.g, genre, description or a waveform).
Outputs a ConditionType, after the input data was embedded as a dense vector.
Returns:
ConditionType:
- A tensor of size [B, T, D] where B is the batch size, T is the length of the
output embedding and D is the dimension of the embedding.
- And a mask indicating where the padding tokens.
"""
raise NotImplementedError()
class TextConditioner(BaseConditioner):
...
class T5Conditioner(TextConditioner):
"""T5-based TextConditioner.
Args:
name (str): Name of the T5 model.
output_dim (int): Output dim of the conditioner.
finetune (bool): Whether to fine-tune T5 at train time.
device (str): Device for T5 Conditioner.
autocast_dtype (tp.Optional[str], optional): Autocast dtype.
word_dropout (float, optional): Word dropout probability.
normalize_text (bool, optional): Whether to apply text normalization.
"""
MODELS = ["t5-small", "t5-base", "t5-large", "t5-3b", "t5-11b",
"google/flan-t5-small", "google/flan-t5-base", "google/flan-t5-large",
"google/flan-t5-xl", "google/flan-t5-xxl"]
MODELS_DIMS = {
"t5-small": 512,
"t5-base": 768,
"t5-large": 1024,
"t5-3b": 1024,
"t5-11b": 1024,
"google/flan-t5-small": 512,
"google/flan-t5-base": 768,
"google/flan-t5-large": 1024,
"google/flan-t5-3b": 1024,
"google/flan-t5-11b": 1024,
}
def __init__(self, name: str, output_dim: int, finetune: bool, device: str,
autocast_dtype: tp.Optional[str] = 'float32', word_dropout: float = 0.,
normalize_text: bool = False):
assert name in self.MODELS, f"Unrecognized t5 model name (should in {self.MODELS})"
super().__init__(self.MODELS_DIMS[name], output_dim)
self.device = device
self.name = name
self.finetune = finetune
self.word_dropout = word_dropout
if autocast_dtype is None or self.device == 'cpu':
self.autocast = TorchAutocast(enabled=False)
if self.device != 'cpu':
logger.warning("T5 has no autocast, this might lead to NaN")
else:
dtype = getattr(torch, autocast_dtype)
assert isinstance(dtype, torch.dtype)
logger.info(f"T5 will be evaluated with autocast as {autocast_dtype}")
self.autocast = TorchAutocast(enabled=True, device_type=self.device, dtype=dtype)
# Let's disable logging temporarily because T5 will vomit some errors otherwise.
# thanks https://gist.github.com/simon-weber/7853144
previous_level = logging.root.manager.disable
logging.disable(logging.ERROR)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
try:
self.t5_tokenizer = T5Tokenizer.from_pretrained(name)
t5 = T5EncoderModel.from_pretrained(name).train(mode=finetune)
finally:
logging.disable(previous_level)
if finetune:
self.t5 = t5
else:
# this makes sure that the t5 models is not part
# of the saved checkpoint
self.__dict__['t5'] = t5.to(device)
self.normalize_text = normalize_text
if normalize_text:
self.text_normalizer = WhiteSpaceTokenizer(1, lemma=True, stopwords=True)
def tokenize(self, x: tp.List[tp.Optional[str]]) -> tp.Dict[str, torch.Tensor]:
# if current sample doesn't have a certain attribute, replace with empty string
entries: tp.List[str] = [xi if xi is not None else "" for xi in x]
if self.normalize_text:
_, _, entries = self.text_normalizer(entries, return_text=True)
if self.word_dropout > 0. and self.training:
new_entries = []
for entry in entries:
words = [word for word in entry.split(" ") if random.random() >= self.word_dropout]
new_entries.append(" ".join(words))
entries = new_entries
empty_idx = torch.LongTensor([i for i, xi in enumerate(entries) if xi == ""])
inputs = self.t5_tokenizer(entries, return_tensors='pt', padding=True).to(self.device)
mask = inputs['attention_mask']
mask[empty_idx, :] = 0 # zero-out index where the input is non-existant
return inputs
def forward(self, inputs: tp.Dict[str, torch.Tensor]) -> ConditionType:
mask = inputs['attention_mask']
with torch.set_grad_enabled(self.finetune), self.autocast:
embeds = self.t5(**inputs).last_hidden_state
embeds = self.output_proj(embeds.to(self.output_proj.weight))
embeds = (embeds * mask.unsqueeze(-1))
return embeds, mask
def dropout_condition(sample: ConditioningAttributes, condition_type: str, condition: str) -> ConditioningAttributes:
"""Utility function for nullifying an attribute inside an ConditioningAttributes object.
If the condition is of type "wav", then nullify it using `nullify_condition` function.
If the condition is of any other type, set its value to None.
Works in-place.
"""
if condition_type not in ['text', 'wav', 'joint_embed']:
raise ValueError(
"dropout_condition got an unexpected condition type!"
f" expected 'text', 'wav' or 'joint_embed' but got '{condition_type}'"
)
if condition not in getattr(sample, condition_type):
raise ValueError(
"dropout_condition received an unexpected condition!"
f" expected wav={sample.wav.keys()} and text={sample.text.keys()}"
f" but got '{condition}' of type '{condition_type}'!"
)
if condition_type == 'wav':
wav_cond = sample.wav[condition]
sample.wav[condition] = nullify_wav(wav_cond)
elif condition_type == 'joint_embed':
embed = sample.joint_embed[condition]
sample.joint_embed[condition] = nullify_joint_embed(embed)
else:
sample.text[condition] = None
return sample
class DropoutModule(nn.Module):
"""Base module for all dropout modules."""
def __init__(self, seed: int = 1234):
super().__init__()
self.rng = torch.Generator()
self.rng.manual_seed(seed)
class AttributeDropout(DropoutModule):
"""Dropout with a given probability per attribute.
This is different from the behavior of ClassifierFreeGuidanceDropout as this allows for attributes
to be dropped out separately. For example, "artist" can be dropped while "genre" remains.
This is in contrast to ClassifierFreeGuidanceDropout where if "artist" is dropped "genre"
must also be dropped.
Args:
p (tp.Dict[str, float]): A dict mapping between attributes and dropout probability. For example:
...
"genre": 0.1,
"artist": 0.5,
"wav": 0.25,
...
active_on_eval (bool, optional): Whether the dropout is active at eval. Default to False.
seed (int, optional): Random seed.
"""
def __init__(self, p: tp.Dict[str, tp.Dict[str, float]], active_on_eval: bool = False, seed: int = 1234):
super().__init__(seed=seed)
self.active_on_eval = active_on_eval
# construct dict that return the values from p otherwise 0
self.p = {}
for condition_type, probs in p.items():
self.p[condition_type] = defaultdict(lambda: 0, probs)
def forward(self, samples: tp.List[ConditioningAttributes]) -> tp.List[ConditioningAttributes]:
"""
Args:
samples (list[ConditioningAttributes]): List of conditions.
Returns:
list[ConditioningAttributes]: List of conditions after certain attributes were set to None.
"""
if not self.training and not self.active_on_eval:
return samples
samples = deepcopy(samples)
for condition_type, ps in self.p.items(): # for condition types [text, wav]
for condition, p in ps.items(): # for attributes of each type (e.g., [artist, genre])
if torch.rand(1, generator=self.rng).item() < p:
for sample in samples:
dropout_condition(sample, condition_type, condition)
return samples
def __repr__(self):
return f"AttributeDropout({dict(self.p)})"
class ClassifierFreeGuidanceDropout(DropoutModule):
"""Classifier Free Guidance dropout.
All attributes are dropped with the same probability.
Args:
p (float): Probability to apply condition dropout during training.
seed (int): Random seed.
"""
def __init__(self, p: float, seed: int = 1234):
super().__init__(seed=seed)
self.p = p
def forward(self, samples: tp.List[ConditioningAttributes]) -> tp.List[ConditioningAttributes]:
"""
Args:
samples (list[ConditioningAttributes]): List of conditions.
Returns:
list[ConditioningAttributes]: List of conditions after all attributes were set to None.
"""
if not self.training:
return samples
# decide on which attributes to drop in a batched fashion
drop = torch.rand(1, generator=self.rng).item() < self.p
if not drop:
return samples
# nullify conditions of all attributes
samples = deepcopy(samples)
for condition_type in ["wav", "text"]:
for sample in samples:
for condition in sample.attributes[condition_type]:
dropout_condition(sample, condition_type, condition)
return samples
def __repr__(self):
return f"ClassifierFreeGuidanceDropout(p={self.p})"
class ConditioningProvider(nn.Module):
"""Prepare and provide conditions given all the supported conditioners.
Args:
conditioners (dict): Dictionary of conditioners.
device (torch.device or str, optional): Device for conditioners and output condition types.
"""
def __init__(self, conditioners: tp.Dict[str, BaseConditioner], device: tp.Union[torch.device, str] = "cpu"):
super().__init__()
self.device = device
self.conditioners = nn.ModuleDict(conditioners)
# @property
# def joint_embed_conditions(self):
# return [m.attribute for m in self.conditioners.values() if isinstance(m, JointEmbeddingConditioner)]
# @property
# def has_joint_embed_conditions(self):
# return len(self.joint_embed_conditions) > 0
@property
def text_conditions(self):
return [k for k, v in self.conditioners.items() if isinstance(v, TextConditioner)]
def tokenize(self, inputs: tp.List[ConditioningAttributes]) -> tp.Dict[str, tp.Any]:
"""Match attributes/wavs with existing conditioners in self, and compute tokenize them accordingly.
This should be called before starting any real GPU work to avoid synchronization points.
This will return a dict matching conditioner names to their arbitrary tokenized representations.
Args:
inputs (list[ConditioningAttributes]): List of ConditioningAttributes objects containing
text and wav conditions.
"""
assert all([isinstance(x, ConditioningAttributes) for x in inputs]), (
"Got unexpected types input for conditioner! should be tp.List[ConditioningAttributes]",
f" but types were {set([type(x) for x in inputs])}"
)
output = {}
text = self._collate_text(inputs)
# wavs = self._collate_wavs(inputs)
# joint_embeds = self._collate_joint_embeds(inputs)
# assert set(text.keys() | wavs.keys() | joint_embeds.keys()).issubset(set(self.conditioners.keys())), (
# f"Got an unexpected attribute! Expected {self.conditioners.keys()}, ",
# f"got {text.keys(), wavs.keys(), joint_embeds.keys()}"
# )
for attribute, batch in text.items(): #, joint_embeds.items()):
output[attribute] = self.conditioners[attribute].tokenize(batch)
return output
def forward(self, tokenized: tp.Dict[str, tp.Any]) -> tp.Dict[str, ConditionType]:
"""Compute pairs of `(embedding, mask)` using the configured conditioners and the tokenized representations.
The output is for example:
{
"genre": (torch.Tensor([B, 1, D_genre]), torch.Tensor([B, 1])),
"description": (torch.Tensor([B, T_desc, D_desc]), torch.Tensor([B, T_desc])),
...
}
Args:
tokenized (dict): Dict of tokenized representations as returned by `tokenize()`.
"""
output = {}
for attribute, inputs in tokenized.items():
condition, mask = self.conditioners[attribute](inputs)
output[attribute] = (condition, mask)
return output
def _collate_text(self, samples: tp.List[ConditioningAttributes]) -> tp.Dict[str, tp.List[tp.Optional[str]]]:
"""Given a list of ConditioningAttributes objects, compile a dictionary where the keys
are the attributes and the values are the aggregated input per attribute.
For example:
Input:
[
ConditioningAttributes(text={"genre": "Rock", "description": "A rock song with a guitar solo"}, wav=...),
ConditioningAttributes(text={"genre": "Hip-hop", "description": "A hip-hop verse"}, wav=...),
]
Output:
{
"genre": ["Rock", "Hip-hop"],
"description": ["A rock song with a guitar solo", "A hip-hop verse"]
}
Args:
samples (list of ConditioningAttributes): List of ConditioningAttributes samples.
Returns:
dict[str, list[str, optional]]: A dictionary mapping an attribute name to text batch.
"""
out: tp.Dict[str, tp.List[tp.Optional[str]]] = defaultdict(list)
texts = [x.text for x in samples]
for text in texts:
for condition in self.text_conditions:
out[condition].append(text[condition])
return out
class ConditionFuser(StreamingModule):
"""Condition fuser handles the logic to combine the different conditions
to the actual model input.
Args:
fuse2cond (tp.Dict[str, str]): A dictionary that says how to fuse
each condition. For example:
{
"prepend": ["description"],
"sum": ["genre", "bpm"],
"cross": ["description"],
}
cross_attention_pos_emb (bool, optional): Use positional embeddings in cross attention.
cross_attention_pos_emb_scale (int): Scale for positional embeddings in cross attention if used.
"""
FUSING_METHODS = ["sum", "prepend", "cross", "input_interpolate"]
def __init__(self, fuse2cond: tp.Dict[str, tp.List[str]], cross_attention_pos_emb: bool = False,
cross_attention_pos_emb_scale: float = 1.0):
super().__init__()
assert all(
[k in self.FUSING_METHODS for k in fuse2cond.keys()]
), f"Got invalid fuse method, allowed methods: {self.FUSING_METHODS}"
self.cross_attention_pos_emb = cross_attention_pos_emb
self.cross_attention_pos_emb_scale = cross_attention_pos_emb_scale
self.fuse2cond: tp.Dict[str, tp.List[str]] = fuse2cond
self.cond2fuse: tp.Dict[str, str] = {}
for fuse_method, conditions in fuse2cond.items():
for condition in conditions:
self.cond2fuse[condition] = fuse_method
def forward(
self,
input: torch.Tensor,
conditions: tp.Dict[str, ConditionType]
) -> tp.Tuple[torch.Tensor, tp.Optional[torch.Tensor]]:
"""Fuse the conditions to the provided model input.
Args:
input (torch.Tensor): Transformer input.
conditions (dict[str, ConditionType]): Dict of conditions.
Returns:
tuple[torch.Tensor, torch.Tensor]: The first tensor is the transformer input
after the conditions have been fused. The second output tensor is the tensor
used for cross-attention or None if no cross attention inputs exist.
"""
B, T, _ = input.shape
if 'offsets' in self._streaming_state:
first_step = False
offsets = self._streaming_state['offsets']
else:
first_step = True
offsets = torch.zeros(input.shape[0], dtype=torch.long, device=input.device)
assert set(conditions.keys()).issubset(set(self.cond2fuse.keys())), \
f"given conditions contain unknown attributes for fuser, " \
f"expected {self.cond2fuse.keys()}, got {conditions.keys()}"
cross_attention_output = None
for cond_type, (cond, cond_mask) in conditions.items():
op = self.cond2fuse[cond_type]
if op == 'sum':
input += cond
elif op == 'input_interpolate':
cond = einops.rearrange(cond, "b t d -> b d t")
cond = F.interpolate(cond, size=input.shape[1])
input += einops.rearrange(cond, "b d t -> b t d")
elif op == 'prepend':
if first_step:
input = torch.cat([cond, input], dim=1)
elif op == 'cross':
if cross_attention_output is not None:
cross_attention_output = torch.cat([cross_attention_output, cond], dim=1)
else:
cross_attention_output = cond
else:
raise ValueError(f"unknown op ({op})")
if self.cross_attention_pos_emb and cross_attention_output is not None:
positions = torch.arange(
cross_attention_output.shape[1],
device=cross_attention_output.device
).view(1, -1, 1)
pos_emb = create_sin_embedding(positions, cross_attention_output.shape[-1])
cross_attention_output = cross_attention_output + self.cross_attention_pos_emb_scale * pos_emb
if self._is_streaming:
self._streaming_state['offsets'] = offsets + T
return input, cross_attention_output
|