File size: 9,374 Bytes
d72b2c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
966f861
d72b2c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import torch
from cached_path import cached_path
import nltk
# nltk.download('punkt')
import random
random.seed(0)
import numpy as np
np.random.seed(0)
import time
import random
import yaml
import torch.nn.functional as F
import copy
import torchaudio
import librosa
from models import *

from scipy.io.wavfile import write
from munch import Munch
from torch import nn
from nltk.tokenize import word_tokenize
from monotonic_align import mask_from_lens
from monotonic_align.core import maximum_path_c

torch.manual_seed(0)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True


# IPA Phonemizer: https://github.com/bootphon/phonemizer

_pad = "$"
_punctuation = ';:,.!?¡¿—…"«»“” '
_letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
_letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"

# Export all symbols:
symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa)

dicts = {}
for i in range(len((symbols))):
    dicts[symbols[i]] = i

class TextCleaner:
    def __init__(self, dummy=None):
        self.word_index_dictionary = dicts
        print(len(dicts))
    def __call__(self, text):
        indexes = []
        for char in text:
            try:
                indexes.append(self.word_index_dictionary[char])
            except KeyError:
                print('CLEAN', text)
        return indexes



textclenaer = TextCleaner()


to_mel = torchaudio.transforms.MelSpectrogram(
    n_mels=80, n_fft=2048, win_length=1200, hop_length=300)
mean, std = -4, 4

# START UTIL







def recursive_munch(d):
    if isinstance(d, dict):
        return Munch((k, recursive_munch(v)) for k, v in d.items())
    elif isinstance(d, list):
        return [recursive_munch(v) for v in d]
    else:
        return d
    

    
# ======== UTILS ABOVE    

def length_to_mask(lengths):
    mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
    mask = torch.gt(mask+1, lengths.unsqueeze(1))
    return mask

def preprocess(wave):
    wave_tensor = torch.from_numpy(wave).float()
    mel_tensor = to_mel(wave_tensor)
    mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std
    return mel_tensor

def compute_style(path):
    wave, sr = librosa.load(path, sr=24000)
    audio, index = librosa.effects.trim(wave, top_db=30)
    if sr != 24000:
        audio = librosa.resample(audio, sr, 24000)
    mel_tensor = preprocess(audio).to(device)

    with torch.no_grad():
        ref_s = model.style_encoder(mel_tensor.unsqueeze(1))
        ref_p = model.predictor_encoder(mel_tensor.unsqueeze(1))

    return torch.cat([ref_s, ref_p], dim=1)

device = 'cpu'
if torch.cuda.is_available():
    device = 'cuda'
elif torch.backends.mps.is_available():
    # print("MPS would be available but cannot be used rn")
    pass
    # device = 'mps'

import phonemizer
global_phonemizer = phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True,  with_stress=True)
# phonemizer = Phonemizer.from_checkpoint(str(cached_path('https://public-asai-dl-models.s3.eu-central-1.amazonaws.com/DeepPhonemizer/en_us_cmudict_ipa_forward.pt')))


config = yaml.safe_load(open(str('Utils/config.yml')))

# load pretrained ASR model
ASR_config = config.get('ASR_config', False)
ASR_path = config.get('ASR_path', False)
text_aligner = load_ASR_models(ASR_path, ASR_config)

# load pretrained F0 model
F0_path = config.get('F0_path', False)
pitch_extractor = load_F0_models(F0_path)

# load BERT model
from Utils.PLBERT.util import load_plbert
BERT_path = config.get('PLBERT_dir', False)
plbert = load_plbert(BERT_path)

model_params = recursive_munch(config['model_params'])
model = build_model(model_params, text_aligner, pitch_extractor, plbert)
_ = [model[key].eval() for key in model]
_ = [model[key].to(device) for key in model]

# params_whole = torch.load("Models/LibriTTS/epochs_2nd_00020.pth", map_location='cpu')
params_whole = torch.load(str(cached_path("hf://yl4579/StyleTTS2-LibriTTS/Models/LibriTTS/epochs_2nd_00020.pth")), map_location='cpu')
params = params_whole['net']

for key in model:
    if key in params:
        print('%s loaded' % key)
        try:
            model[key].load_state_dict(params[key])
        except:
            from collections import OrderedDict
            state_dict = params[key]
            new_state_dict = OrderedDict()
            for k, v in state_dict.items():
                name = k[7:] # remove `module.`
                new_state_dict[name] = v
            # load params
            model[key].load_state_dict(new_state_dict, strict=False)
#             except:
#                 _load(params[key], model[key])
_ = [model[key].eval() for key in model]

from Modules.diffusion.sampler import DiffusionSampler, ADPM2Sampler, KarrasSchedule

sampler = DiffusionSampler(
    model.diffusion.diffusion,
    sampler=ADPM2Sampler(),
    sigma_schedule=KarrasSchedule(sigma_min=0.0001, sigma_max=3.0, rho=9.0), # empirical parameters
    clamp=False
)

def inference(text, ref_s, alpha = 0.3, beta = 0.7, diffusion_steps=5, embedding_scale=1, use_gruut=False):
    text = text.strip()
    ps = global_phonemizer.phonemize([text])
    # print(f'PHONEMIZER: {ps=}\n\n') #PHONEMIZER: ps=['ɐbˈɛbæbləm ']
    ps = word_tokenize(ps[0])
    # print(f'TOKENIZER: {ps=}\n\n') #OKENIZER: ps=['ɐbˈɛbæbləm']
    ps = ' '.join(ps)
    tokens = textclenaer(ps)
    # print(f'TEXTCLEAN: {ps=}\n\n') #TEXTCLEAN: ps='ɐbˈɛbæbləm'
    tokens.insert(0, 0)
    tokens = torch.LongTensor(tokens).to(device).unsqueeze(0)
    # print(f'TOKENSFINAL: {ps=}\n\n')

    with torch.no_grad():
        input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
        text_mask = length_to_mask(input_lengths).to(device)
        # -----------------------
        # WHO TRANSLATES these tokens to sylla
        # print(text_mask.shape, '\n__\n', tokens, '\n__\n',  text_mask.min(), text_mask.max())
        # text_mask=is binary
        # tokes =  tensor([[  0,  55, 157,  86, 125,  83,  55, 156,  57, 158, 123,  48,  83,  61,
                        #  157, 102,  61,  16, 138,  64,  16,  53, 156, 138,  54,  62, 131,  85,
                        #  123,  83,  54,  16,  50, 156,  86, 123, 102, 125, 102,  46, 147,  16,
                        #   62, 135,  16,  76, 158,  92,  55, 156,  86,  56,  62, 177,  46,  16,
                        #   50, 157,  43, 102,  58,  85,  55, 156,  51, 158,  46,  51, 158,  83,
                        #   16,  48,  76, 158, 123,  16,  72,  53,  61, 157,  86,  61,  83,  44,
                        #  156, 102,  54, 177, 125,  51,  16,  72,  56,  46,  16, 102, 112,  53,
                        #   54, 156,  63, 158, 147,  83,  56,  16,   4]], device='cuda:0') 


        t_en = model.text_encoder(tokens, input_lengths, text_mask)
        bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())
        d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
        # print('BERTdu', bert_dur.shape, tokens.shape, '\n') # bert what is the 768 per token -> IS USED in sampler
        # BERTdu torch.Size([1, 11, 768]) torch.Size([1, 11])

        s_pred = sampler(noise = torch.randn((1, 256)).unsqueeze(1).to(device),
                                          embedding=bert_dur,
                                          embedding_scale=embedding_scale,
                                            features=ref_s, # reference from the same speaker as the embedding
                                             num_steps=diffusion_steps).squeeze(1)
     

        s = s_pred[:, 128:]
        ref = s_pred[:, :128]

        ref = alpha * ref + (1 - alpha)  * ref_s[:, :128]
        s = beta * s + (1 - beta)  * ref_s[:, 128:]

        d = model.predictor.text_encoder(d_en,
                                         s, input_lengths, text_mask)

        x, _ = model.predictor.lstm(d)
        duration = model.predictor.duration_proj(x)

        duration = torch.sigmoid(duration).sum(axis=-1)
        pred_dur = torch.round(duration.squeeze()).clamp(min=1)


        pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data))
        c_frame = 0
        for i in range(pred_aln_trg.size(0)):
            pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1
            c_frame += int(pred_dur[i].data)

        # encode prosody
        en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device))
        if model_params.decoder.type == "hifigan":
            asr_new = torch.zeros_like(en)
            asr_new[:, :, 0] = en[:, :, 0]
            asr_new[:, :, 1:] = en[:, :, 0:-1]
            en = asr_new

        F0_pred, N_pred = model.predictor.F0Ntrain(en, s)

        asr = (t_en @ pred_aln_trg.unsqueeze(0).to(device))
        if model_params.decoder.type == "hifigan":
            asr_new = torch.zeros_like(asr)
            asr_new[:, :, 0] = asr[:, :, 0]
            asr_new[:, :, 1:] = asr[:, :, 0:-1]
            asr = asr_new

        out = model.decoder(asr,
                                F0_pred, N_pred, ref.squeeze().unsqueeze(0))


    return out.squeeze().cpu().numpy()[..., :-50] # weird pulse at the end of the model, need to be fixed later