File size: 1,395 Bytes
a454558
e7bc726
 
 
 
 
a454558
 
 
e7bc726
 
a454558
 
 
 
 
 
 
 
 
 
 
 
e7bc726
a454558
e7bc726
 
 
 
 
 
a454558
e7bc726
a454558
e7bc726
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
from typing import  Dict, List, Any
import base64
from PIL import Image
from io import BytesIO
import numpy as np
from paddleocr import PaddleOCR, draw_ocr

class EndpointHandler():
    def __init__(self, path=""):
        
        self.pipeline = PaddleOCR(lang="en",ocr_version="PP-OCRv4",show_log = False,use_gpu=True)


    def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
        """
        Args:
            data (:obj:):
                includes the input data and the parameters for the inference.
        Return:
            A :obj:`list`:. The object returned should be a list of one list like [[{"label": 0.9939950108528137}]] containing :
                - "label": A string representing what the label/class is. There can be multiple labels.
                - "score": A score between 0 and 1 describing how confident the model is for this label/class.
        """
        
        inputs = data.pop("inputs", data)
        #parameters = data.pop("parameters", None)
        
        receipt_image = Image.open(BytesIO(base64.b64decode(inputs)))
        receipt_image_array = np.array(receipt_image.convert('RGB'))
        result = self.pipeline.ocr(receipt_image_array,cls=True)
        txts = [line[1][0] for line in result[0]]
        # pass inputs with all kwargs in data
        extract = "".join(txts)
        # postprocess the prediction
        return extract