djbp's picture
Model save
d5f6a4c verified
metadata
library_name: transformers
license: apache-2.0
base_model: microsoft/swin-base-patch4-window7-224-in22k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swin-base-patch4-window7-224-in22k-construction_type
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8804347826086957

swin-base-patch4-window7-224-in22k-construction_type

This model is a fine-tuned version of microsoft/swin-base-patch4-window7-224-in22k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3095
  • Accuracy: 0.8804

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 512
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 7

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.9839 0.9836 15 0.4599 0.8183
0.4167 1.9672 30 0.3605 0.8628
0.3853 2.9508 45 0.3272 0.8799
0.3302 4.0 61 0.3227 0.8763
0.3302 4.9836 76 0.3269 0.8753
0.3049 5.9672 91 0.3138 0.8799
0.2951 6.8852 105 0.3095 0.8804

Framework versions

  • Transformers 4.44.2
  • Pytorch 1.13.1+cu117
  • Datasets 2.20.0
  • Tokenizers 0.19.1