File size: 1,772 Bytes
c8d88b4 eb95666 c8d88b4 88a81e7 c8d88b4 88a81e7 c8d88b4 88a81e7 c8d88b4 88a81e7 c8d88b4 88a81e7 c8d88b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
language:
- en
- da
---
<p align="center">
<img src="https://doctr-static.mindee.com/models?id=v0.3.1/Logo_doctr.gif&src=0" width="60%">
</p>
**Optical Character Recognition made seamless & accessible to anyone, powered by TensorFlow 2 & PyTorch**
## Task: recognition
https://github.com/mindee/doctr
### Example usage:
```python
from doctr.io import DocumentFile
from doctr.models import ocr_predictor, from_hub
reco_arch = from_hub('diversen/doctr-torch-crnn_vgg16_bn-danish-v1')
det_arch = "db_resnet50"
model = ocr_predictor(det_arch=det_arch, reco_arch=reco_arch, pretrained=True)
image = DocumentFile.from_images(['test.jpg'])
result = model(image)
result.show()
output = result.export()
text_str = ""
for block in output["pages"][0]["blocks"]:
block_txt = ""
for line in block["lines"]:
line_txt = ""
for word in line["words"]:
line_txt += word["value"] + " "
block_txt += line_txt + "\n"
text_str += block_txt + "\n"
print(text_str)
```
### Run Configuration
{
"arch": "crnn_vgg16_bn",
"train_path": "train-data",
"val_path": "validation-data",
"train_samples": 1000,
"val_samples": 20,
"font": "FreeMono.ttf,FreeSans.ttf,FreeSerif.ttf",
"min_chars": 1,
"max_chars": 32,
"name": "doctr-torch-crnn_vgg16_bn-danish-v1",
"epochs": 1,
"batch_size": 64,
"device": 0,
"input_size": 32,
"lr": 0.001,
"weight_decay": 0,
"workers": 16,
"resume": "crnn_vgg16_bn_20240317-095746.pt",
"vocab": "danish",
"test_only": false,
"freeze_backbone": false,
"show_samples": false,
"wb": false,
"push_to_hub": true,
"pretrained": true,
"sched": "cosine",
"amp": false,
"find_lr": false,
"early_stop": false,
"early_stop_epochs": 5,
"early_stop_delta": 0.01
} |