File size: 2,001 Bytes
d7cc385 8a53f56 d7cc385 8a53f56 d7cc385 8a53f56 4217bac 8a53f56 4217bac 8a53f56 d7cc385 4217bac d7cc385 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- nyu-mll/glue
metrics:
- f1
- accuracy
model-index:
- name: glue_sst_classifier
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: glue
type: glue
args: sst2
metrics:
- type: f1
value: 0.9033707865168539
name: F1
- type: accuracy
value: 0.9013761467889908
name: Accuracy
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# glue_sst_classifier
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2359
- F1: 0.9034
- Accuracy: 0.9014
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|
| 0.3653 | 0.19 | 100 | 0.3213 | 0.8717 | 0.8727 |
| 0.291 | 0.38 | 200 | 0.2662 | 0.8936 | 0.8911 |
| 0.2239 | 0.57 | 300 | 0.2417 | 0.9081 | 0.9060 |
| 0.2306 | 0.76 | 400 | 0.2359 | 0.9105 | 0.9094 |
| 0.2185 | 0.95 | 500 | 0.2371 | 0.9011 | 0.8991 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.11.0+cu113
- Datasets 2.1.0
- Tokenizers 0.12.1
|