digo-prayudha's picture
Update README.md
f0ecc91
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_keras_callback
model-index:
  - name: digo-prayudha/Indonesian_sentiment
    results: []
language:
  - id
pipeline_tag: text-classification
datasets:
  - sepidmnorozy/Indonesian_sentiment

digo-prayudha/Indonesian_sentiment

This model is a fine-tuned version of distilbert-base-uncased on sepidmnorozy/Indonesian_sentiment. It achieves the following results on the evaluation set:

  • Train Loss: 0.1678
  • Validation Loss: 0.2402
  • Train Accuracy: 0.9016
  • Epoch: 2

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2475, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Validation Loss Train Accuracy Epoch
0.4013 0.3141 0.8667 0
0.2526 0.2923 0.8839 1
0.1678 0.2402 0.9016 2

How to use this model in Transformers Library

from transformers import pipeline

model = pipeline("text-classification",model="digo-prayudha/Indonesian_sentiment")

model("Makanannya Enak sekali!")

Framework versions

  • Transformers 4.35.2
  • TensorFlow 2.14.0
  • Datasets 2.15.0
  • Tokenizers 0.15.0