File size: 1,807 Bytes
6c27fdd
 
 
 
 
 
 
 
 
 
 
 
 
 
2438a7d
6c27fdd
2438a7d
6c27fdd
2438a7d
6c27fdd
 
 
2438a7d
6c27fdd
2438a7d
6c27fdd
 
 
2438a7d
 
6c27fdd
2438a7d
 
6c27fdd
 
 
2438a7d
6c27fdd
2438a7d
6c27fdd
 
2438a7d
 
6c27fdd
 
2438a7d
6c27fdd
 
2438a7d
35016b9
6c27fdd
35016b9
6c27fdd
 
 
35016b9
6c27fdd
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
---
language:
- en
license: creativeml-openrail-m
tags:
- stable-diffusion
- stable-diffusion-diffusers
- inpainting
- art
- artistic
- diffusers
- anime
- absolute-realism
---

# Absolute realism 1.6525 inpainting

`lykon-absolute-realism/absolute-realism-1.6525-inpainting` is a Stable Diffusion Inpainting model that has been fine-tuned on [runwayml/stable-diffusion-inpainting](https://huggingface.co/runwayml/stable-diffusion-inpainting).

Please consider supporting me: 
- on [Patreon](https://www.patreon.com/Lykon275)
- or [buy me a coffee](https://snipfeed.co/lykon)

## Diffusers

For more general information on how to run inpainting models with 🧨 Diffusers, see [the docs](https://huggingface.co/docs/diffusers/using-diffusers/inpaint).

1. Installation

```
pip install diffusers transformers accelerate
```

2. Run
```py
from diffusers import AutoPipelineForInpainting, DEISMultistepScheduler
import torch
from diffusers.utils import load_image

pipe = AutoPipelineForInpainting.from_pretrained('lykon-absolute-realism/absolute-realism-1.6525-inpainting', torch_dtype=torch.float16, variant="fp16")
pipe.scheduler = DEISMultistepScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to("cuda")

img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"

image = load_image(img_url)
mask_image = load_image(mask_url)


prompt = "a majestic tiger sitting on a park bench"

generator = torch.manual_seed(33)
image = pipe(prompt, image=image, mask_image=mask_image, generator=generator, num_inference_steps=25).images[0]  
image.save("./image.png")
```

![](./image.png)