Edit model card

DictaBERT: A State-of-the-Art BERT Suite for Modern Hebrew

State-of-the-art language model for Hebrew, released here.

This is the base model pretrained with the masked-language-modeling objective.

For the bert-base models for other tasks, see here.

Sample usage:

from transformers import AutoModelForMaskedLM, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('dicta-il/dictabert')
model = AutoModelForMaskedLM.from_pretrained('dicta-il/dictabert')

model.eval()

sentence = '讘砖谞转 1948 讛砖诇讬诐 讗驻专讬诐 拽讬砖讜谉 讗转 [MASK] 讘驻讬住讜诇 诪转讻转 讜讘转讜诇讚讜转 讛讗诪谞讜转 讜讛讞诇 诇驻专住诐 诪讗诪专讬诐 讛讜诪讜专讬住讟讬讬诐'

output = model(tokenizer.encode(sentence, return_tensors='pt'))
# the [MASK] is the 7th token (including [CLS])
import torch
top_2 = torch.topk(output.logits[0, 7, :], 2)[1]
print('\n'.join(tokenizer.convert_ids_to_tokens(top_2))) # should print 诪讞拽专讜 / 讛转诪讞讜转讜 

Citation

If you use DictaBERT in your research, please cite DictaBERT: A State-of-the-Art BERT Suite for Modern Hebrew

BibTeX:

@misc{shmidman2023dictabert,
      title={DictaBERT: A State-of-the-Art BERT Suite for Modern Hebrew}, 
      author={Shaltiel Shmidman and Avi Shmidman and Moshe Koppel},
      year={2023},
      eprint={2308.16687},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

License

Shield: CC BY 4.0

This work is licensed under a Creative Commons Attribution 4.0 International License.

CC BY 4.0

Downloads last month
2,117
Safetensors
Model size
184M params
Tensor type
I64
F32

Collection including dicta-il/dictabert