File size: 12,042 Bytes
da6d0ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
def conv_layer(in_dim, out_dim, kernel_size=1, padding=0, stride=1):
return nn.Sequential(
nn.Conv2d(in_dim, out_dim, kernel_size, stride, padding, bias=False),
nn.BatchNorm2d(out_dim), nn.ReLU(True))
def linear_layer(in_dim, out_dim, bias=False):
return nn.Sequential(nn.Linear(in_dim, out_dim, bias),
nn.BatchNorm1d(out_dim), nn.ReLU(True))
class CoordConv(nn.Module):
def __init__(self,
in_channels,
out_channels,
kernel_size=3,
padding=1,
stride=1):
super().__init__()
self.conv1 = conv_layer(in_channels + 2, out_channels, kernel_size,
padding, stride)
def add_coord(self, input):
b, _, h, w = input.size()
x_range = torch.linspace(-1, 1, w, device=input.device)
y_range = torch.linspace(-1, 1, h, device=input.device)
y, x = torch.meshgrid(y_range, x_range)
y = y.expand([b, 1, -1, -1])
x = x.expand([b, 1, -1, -1])
coord_feat = torch.cat([x, y], 1)
input = torch.cat([input, coord_feat], 1)
return input
def forward(self, x):
x = self.add_coord(x)
x = self.conv1(x)
return x
class Projector(nn.Module):
def __init__(self, word_dim=1024, in_dim=256, kernel_size=3):
super().__init__()
self.in_dim = in_dim
self.kernel_size = kernel_size
# visual projector
self.vis = nn.Sequential( # os16 -> os4
nn.Upsample(scale_factor=2, mode='bilinear'),
conv_layer(in_dim * 2, in_dim * 2, 3, padding=1),
nn.Upsample(scale_factor=2, mode='bilinear'),
conv_layer(in_dim * 2, in_dim, 3, padding=1),
nn.Conv2d(in_dim, in_dim, 1))
# textual projector
out_dim = 1 * in_dim * kernel_size * kernel_size + 1
self.txt = nn.Linear(word_dim, out_dim)
def forward(self, x, word):
'''
x: b, 512, 26, 26
word: b, 512
'''
x = self.vis(x)
B, C, H, W = x.size()
# 1, b*256, 104, 104
x = x.reshape(1, B * C, H, W)
# txt: b, (256*3*3 + 1) -> b, 256, 3, 3 / b
word = self.txt(word)
weight, bias = word[:, :-1], word[:, -1]
weight = weight.reshape(B, C, self.kernel_size, self.kernel_size)
# Conv2d - 1, b*256, 104, 104 -> 1, b, 104, 104
out = F.conv2d(x,
weight,
padding=self.kernel_size // 2,
groups=weight.size(0),
bias=bias)
out = out.transpose(0, 1)
# b, 1, 104, 104
return out
class TransformerDecoder(nn.Module):
def __init__(self,
num_layers,
d_model,
nhead,
dim_ffn,
dropout,
return_intermediate=False):
super().__init__()
self.layers = nn.ModuleList([
TransformerDecoderLayer(d_model=d_model,
nhead=nhead,
dim_feedforward=dim_ffn,
dropout=dropout) for _ in range(num_layers)
])
self.num_layers = num_layers
self.norm = nn.LayerNorm(d_model)
self.return_intermediate = return_intermediate
@staticmethod
def pos1d(d_model, length):
"""
:param d_model: dimension of the model
:param length: length of positions
:return: length*d_model position matrix
"""
if d_model % 2 != 0:
raise ValueError("Cannot use sin/cos positional encoding with "
"odd dim (got dim={:d})".format(d_model))
pe = torch.zeros(length, d_model)
position = torch.arange(0, length).unsqueeze(1)
div_term = torch.exp((torch.arange(0, d_model, 2, dtype=torch.float) *
-(math.log(10000.0) / d_model)))
pe[:, 0::2] = torch.sin(position.float() * div_term)
pe[:, 1::2] = torch.cos(position.float() * div_term)
return pe.unsqueeze(1) # n, 1, 512
@staticmethod
def pos2d(d_model, height, width):
"""
:param d_model: dimension of the model
:param height: height of the positions
:param width: width of the positions
:return: d_model*height*width position matrix
"""
if d_model % 4 != 0:
raise ValueError("Cannot use sin/cos positional encoding with "
"odd dimension (got dim={:d})".format(d_model))
pe = torch.zeros(d_model, height, width)
# Each dimension use half of d_model
d_model = int(d_model / 2)
div_term = torch.exp(
torch.arange(0., d_model, 2) * -(math.log(10000.0) / d_model))
pos_w = torch.arange(0., width).unsqueeze(1)
pos_h = torch.arange(0., height).unsqueeze(1)
pe[0:d_model:2, :, :] = torch.sin(pos_w * div_term).transpose(
0, 1).unsqueeze(1).repeat(1, height, 1)
pe[1:d_model:2, :, :] = torch.cos(pos_w * div_term).transpose(
0, 1).unsqueeze(1).repeat(1, height, 1)
pe[d_model::2, :, :] = torch.sin(pos_h * div_term).transpose(
0, 1).unsqueeze(2).repeat(1, 1, width)
pe[d_model + 1::2, :, :] = torch.cos(pos_h * div_term).transpose(
0, 1).unsqueeze(2).repeat(1, 1, width)
return pe.reshape(-1, 1, height * width).permute(2, 1, 0) # hw, 1, 512
def forward(self, vis, txt, pad_mask):
'''
vis: b, 512, h, w
txt: b, L, 512
pad_mask: b, L
'''
B, C, H, W = vis.size()
_, L, D = txt.size()
# position encoding
vis_pos = self.pos2d(C, H, W)
txt_pos = self.pos1d(D, L)
# reshape & permute
vis = vis.reshape(B, C, -1).permute(2, 0, 1)
txt = txt.permute(1, 0, 2)
# forward
output = vis
intermediate = []
for layer in self.layers:
output = layer(output, txt, vis_pos, txt_pos, pad_mask)
if self.return_intermediate:
# HW, b, 512 -> b, 512, HW
intermediate.append(self.norm(output).permute(1, 2, 0))
if self.norm is not None:
# HW, b, 512 -> b, 512, HW
output = self.norm(output).permute(1, 2, 0)
if self.return_intermediate:
intermediate.pop()
intermediate.append(output)
# [output1, output2, ..., output_n]
return intermediate
else:
# b, 512, HW
return output
return output
class TransformerDecoderLayer(nn.Module):
def __init__(self,
d_model=512,
nhead=9,
dim_feedforward=2048,
dropout=0.1):
super().__init__()
# Normalization Layer
self.self_attn_norm = nn.LayerNorm(d_model)
self.cross_attn_norm = nn.LayerNorm(d_model)
# Attention Layer
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
self.multihead_attn = nn.MultiheadAttention(d_model,
nhead,
dropout=dropout,
kdim=d_model,
vdim=d_model)
# FFN
self.ffn = nn.Sequential(nn.Linear(d_model, dim_feedforward),
nn.ReLU(True), nn.Dropout(dropout),
nn.LayerNorm(dim_feedforward),
nn.Linear(dim_feedforward, d_model))
# LayerNorm & Dropout
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.norm3 = nn.LayerNorm(d_model)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.dropout3 = nn.Dropout(dropout)
def with_pos_embed(self, tensor, pos):
return tensor if pos is None else tensor + pos.to(tensor.device)
def forward(self, vis, txt, vis_pos, txt_pos, pad_mask):
'''
vis: 26*26, b, 512
txt: L, b, 512
vis_pos: 26*26, 1, 512
txt_pos: L, 1, 512
pad_mask: b, L
'''
# Self-Attention
vis2 = self.norm1(vis)
q = k = self.with_pos_embed(vis2, vis_pos)
vis2 = self.self_attn(q, k, value=vis2)[0]
vis2 = self.self_attn_norm(vis2)
vis = vis + self.dropout1(vis2)
# Cross-Attention
vis2 = self.norm2(vis)
vis2 = self.multihead_attn(query=self.with_pos_embed(vis2, vis_pos),
key=self.with_pos_embed(txt, txt_pos),
value=txt,
key_padding_mask=pad_mask)[0]
vis2 = self.cross_attn_norm(vis2)
vis = vis + self.dropout2(vis2)
# FFN
vis2 = self.norm3(vis)
vis2 = self.ffn(vis2)
vis = vis + self.dropout3(vis2)
return vis
class FPN(nn.Module):
def __init__(self,
in_channels=[512, 1024, 1024],
out_channels=[256, 512, 1024]):
super(FPN, self).__init__()
# text projection
self.txt_proj = linear_layer(in_channels[2], out_channels[2])
# fusion 1: v5 & seq -> f_5: b, 1024, 13, 13
self.f1_v_proj = conv_layer(in_channels[2], out_channels[2], 1, 0)
self.norm_layer = nn.Sequential(nn.BatchNorm2d(out_channels[2]),
nn.ReLU(True))
# fusion 2: v4 & fm -> f_4: b, 512, 26, 26
self.f2_v_proj = conv_layer(in_channels[1], out_channels[1], 3, 1)
self.f2_cat = conv_layer(out_channels[2] + out_channels[1],
out_channels[1], 1, 0)
# fusion 3: v3 & fm_mid -> f_3: b, 512, 52, 52
self.f3_v_proj = conv_layer(in_channels[0], out_channels[0], 3, 1)
self.f3_cat = conv_layer(out_channels[0] + out_channels[1],
out_channels[1], 1, 0)
# fusion 4: f_3 & f_4 & f_5 -> fq: b, 256, 26, 26
self.f4_proj5 = conv_layer(out_channels[2], out_channels[1], 3, 1)
self.f4_proj4 = conv_layer(out_channels[1], out_channels[1], 3, 1)
self.f4_proj3 = conv_layer(out_channels[1], out_channels[1], 3, 1)
# aggregation
self.aggr = conv_layer(3 * out_channels[1], out_channels[1], 1, 0)
self.coordconv = nn.Sequential(
CoordConv(out_channels[1], out_channels[1], 3, 1),
conv_layer(out_channels[1], out_channels[1], 3, 1))
def forward(self, imgs, state):
# v3, v4, v5: 256, 52, 52 / 512, 26, 26 / 1024, 13, 13
v3, v4, v5 = imgs
# fusion 1: b, 1024, 13, 13
# text projection: b, 1024 -> b, 1024
state = self.txt_proj(state).unsqueeze(-1).unsqueeze(
-1) # b, 1024, 1, 1
f5 = self.f1_v_proj(v5)
f5 = self.norm_layer(f5 * state)
# fusion 2: b, 512, 26, 26
f4 = self.f2_v_proj(v4)
f5_ = F.interpolate(f5, scale_factor=2, mode='bilinear')
f4 = self.f2_cat(torch.cat([f4, f5_], dim=1))
# fusion 3: b, 256, 26, 26
f3 = self.f3_v_proj(v3)
f3 = F.avg_pool2d(f3, 2, 2)
f3 = self.f3_cat(torch.cat([f3, f4], dim=1))
# fusion 4: b, 512, 13, 13 / b, 512, 26, 26 / b, 512, 26, 26
fq5 = self.f4_proj5(f5)
fq4 = self.f4_proj4(f4)
fq3 = self.f4_proj3(f3)
# query
fq5 = F.interpolate(fq5, scale_factor=2, mode='bilinear')
fq = torch.cat([fq3, fq4, fq5], dim=1)
fq = self.aggr(fq)
fq = self.coordconv(fq)
# b, 512, 26, 26
return fq, f5
|