File size: 7,795 Bytes
3b5fc39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import os
import sys
from os import path as osp
from io import BytesIO

from mbench.ytvos_ref import build as build_ytvos_ref
import argparse
import opts

import sys
from pathlib import Path
import os
from os import path as osp
import skimage
from io import BytesIO

import numpy as np
import pandas as pd
import regex as re
import json

import cv2
from PIL import Image, ImageDraw
import torch
from torchvision.transforms import functional as F

from skimage import measure                        # (pip install scikit-image)
from shapely.geometry import Polygon, MultiPolygon # (pip install Shapely)

import matplotlib.pyplot as plt
import matplotlib.patches as patches
from matplotlib.collections import PatchCollection
from matplotlib.patches import Rectangle
import textwrap


import ipywidgets as widgets
from IPython.display import display, clear_output

from openai import OpenAI
import base64

def number_objects_and_encode(idx, color_mask=False):
    encoded_frames = {}
    contoured_frames = {}  # New dictionary for original images
    vid_cat_cnts = {}

    vid_meta = metas[idx]
    vid_data = train_dataset[idx]
    vid_id = vid_meta['video']
    frame_indx = vid_meta['sample_indx']
    cat_names = set(vid_meta['obj_id_cat'].values())
    imgs = vid_data[0]
    
    for cat in cat_names:
        cat_frames = []
        contour_frames = []
        frame_cat_cnts = {}

        for i in range(imgs.size(0)):
            frame_name = frame_indx[i]
            frame = np.copy(imgs[i].permute(1, 2, 0).numpy())  
            frame_for_contour = np.copy(imgs[i].permute(1, 2, 0).numpy()) 

            frame_data = vid_data[2][frame_name]
            obj_ids = list(frame_data.keys())

            cat_cnt = 0

            for j in range(len(obj_ids)):
                obj_id = obj_ids[j]
                obj_data = frame_data[obj_id]
                obj_bbox = obj_data['bbox']
                obj_valid = obj_data['valid']
                obj_mask = obj_data['mask'].numpy().astype(np.uint8)
                obj_cat = obj_data['category_name']

                if obj_cat == cat and obj_valid:
                    cat_cnt += 1
                    
                    if color_mask == False:
                        contours, _ = cv2.findContours(obj_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
                        cv2.drawContours(frame, contours, -1, colors[j], 3)
                        for i, contour in enumerate(contours):
                            # ์œค๊ณฝ์„  ์ค‘์‹ฌ ๊ณ„์‚ฐ
                            moments = cv2.moments(contour)
                            if moments["m00"] != 0:  # ์ค‘์‹ฌ ๊ณ„์‚ฐ ๊ฐ€๋Šฅ ์—ฌ๋ถ€ ํ™•์ธ
                                cx = int(moments["m10"] / moments["m00"])
                                cy = int(moments["m01"] / moments["m00"])
                            else:
                                cx, cy = contour[0][0]  # ์ค‘์‹ฌ ๊ณ„์‚ฐ ๋ถˆ๊ฐ€์‹œ ๋Œ€์ฒด ์ขŒํ‘œ ์‚ฌ์šฉ
                            
                            # ํ…์ŠคํŠธ ๋ฐฐ๊ฒฝ (๊ฒ€์€์ƒ‰ ๋ฐฐ๊ฒฝ ๋งŒ๋“ค๊ธฐ)
                            font = cv2.FONT_HERSHEY_SIMPLEX
                            text = obj_id
                            text_size = cv2.getTextSize(text, font, 1, 2)[0]
                            text_w, text_h = text_size
                            
                            # ํ…์ŠคํŠธ ๋ฐฐ๊ฒฝ ๊ทธ๋ฆฌ๊ธฐ (๊ฒ€์€์ƒ‰ ๋ฐฐ๊ฒฝ)
                            cv2.rectangle(frame, (cx - text_w // 2 - 5, cy - text_h // 2 - 5),
                                        (cx + text_w // 2 + 5, cy + text_h // 2 + 5), (0, 0, 0), -1)
                            
                            # ํ…์ŠคํŠธ ๊ทธ๋ฆฌ๊ธฐ (ํฐ์ƒ‰ ํ…์ŠคํŠธ)
                            cv2.putText(frame, text, (cx - text_w // 2, cy + text_h // 2),
                                        font, 1, (255, 255, 255), 2)

                    else:
                        alpha = 0.08

                        colored_obj_mask = np.zeros_like(frame)  
                        colored_obj_mask[obj_mask == 1] = colors[j]
                        frame[obj_mask == 1] = (
                            (1 - alpha) * frame[obj_mask == 1]
                            + alpha * colored_obj_mask[obj_mask == 1]
                        )


                        contours, _ = cv2.findContours(obj_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
                        cv2.drawContours(frame, contours, -1, colors[j], 2)
                        cv2.drawContours(frame_for_contour, contours, -1, colors[j], 2)
                        
                        
                        
                        if len(contours) > 0:
                            largest_contour = max(contours, key=cv2.contourArea)
                            M = cv2.moments(largest_contour)
                            if M["m00"] != 0:  
                                center_x = int(M["m10"] / M["m00"])
                                center_y = int(M["m01"] / M["m00"])
                            else:
                                center_x, center_y = 0, 0

                        font = cv2.FONT_HERSHEY_SIMPLEX
                        text = obj_id

                        font_scale = 0.9  
                        text_size = cv2.getTextSize(text, font, font_scale, 2)[0]                        
                        text_x = center_x - text_size[0] // 1  # ํ…์ŠคํŠธ์˜ ๊ฐ€๋กœ ์ค‘์‹ฌ
                        text_y = center_y
                        # text_y = center_y + text_size[1] // 2 # ํ…์ŠคํŠธ์˜ ์„ธ๋กœ ์ค‘์‹ฌ

                        # ํ…์ŠคํŠธ ๋ฐฐ๊ฒฝ ์‚ฌ๊ฐํ˜• ์ขŒํ‘œ ๊ณ„์‚ฐ
                        rect_start = (text_x - 5, text_y - text_size[1] - 5)  # ๋ฐฐ๊ฒฝ ์‚ฌ๊ฐํ˜• ์ขŒ์ƒ๋‹จ
                        # rect_end = (text_x + text_size[0] + 5, text_y + 5) 
                        rect_end = (text_x + text_size[0] + 5, text_y)

                        cv2.rectangle(frame, rect_start, rect_end, (0, 0, 0), -1)
                        cv2.putText(frame, text, (text_x, text_y), font, 1, (255, 255, 255), 2)

            plt.figure(figsize=(12, 8))
            plt.imshow(frame)
            plt.title(f"frame {frame_name}")
            plt.tight_layout()
            plt.axis('off')
            plt.show()
        
            buffer = BytesIO()
            frame = Image.fromarray(frame)
            frame.save(buffer, format='jpeg')
            buffer.seek(0)
            cat_frames.append(base64.b64encode(buffer.read()).decode("utf-8"))
            frame_cat_cnts[frame_name] = cat_cnt

            buffer.seek(0)  # Reuse buffer instead of creating a new one
            buffer.truncate()
            frame_for_contour = Image.fromarray(frame_for_contour)
            frame_for_contour.save(buffer, format='jpeg')
            buffer.seek(0)
            contour_frames.append(base64.b64encode(buffer.read()).decode("utf-8"))
        
        encoded_frames[cat] = cat_frames
        contoured_frames[cat] = contour_frames
        vid_cat_cnts[cat] = frame_cat_cnts
    
    return encoded_frames, vid_cat_cnts, contoured_frames 

if __name__ == '__main__':
    parser = argparse.ArgumentParser('ReferFormer training and evaluation script', parents=[opts.get_args_parser()])
    args = parser.parse_args()

    #==================๋ฐ์ดํ„ฐ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ===================
    # ์ „์ฒด ๋ฐ์ดํ„ฐ์…‹
    train_dataset = build_ytvos_ref(image_set = 'train', args = args)

    # ์ „์ฒด ๋ฐ์ดํ„ฐ์…‹ ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ
    metas = train_dataset.metas

    # ์ƒ‰์ƒ ํ›„๋ณด 8๊ฐœ (RGB ํ˜•์‹)
    colors = [
        (255, 0, 0),    # Red
        (0, 255, 0),    # Green
        (0, 0, 255),    # Blue
        (255, 255, 0),  # Yellow
        (255, 0, 255),  # Magenta
        (0, 255, 255),  # Cyan
        (128, 0, 128),  # Purple
        (255, 165, 0)   # Orange
    ]