File size: 23,531 Bytes
8d82201 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 |
import datetime
import os
import time
import torch
import torch.utils.data
from torch import nn
from functools import reduce
import operator
from bert.modeling_bert import BertModel
import torchvision
from lib import segmentation
import transforms as T
import utils
import numpy as np
import torch.nn.functional as F
from data.dataset_refer_zom import Referzom_Dataset, Refzom_DistributedSampler
from data.dataset_refer_bert_rev import ReferDataset
import gc
from collections import OrderedDict
from torch.utils.tensorboard import SummaryWriter
def get_dataset(image_set, transform, args, eval_mode=False):
if args.dataset == 'ref-zom':
ds = Referzom_Dataset(args,
split=image_set,
image_transforms=transform,
target_transforms=None,
eval_mode=eval_mode)
else :
ds = ReferDataset(args,
split=image_set,
image_transforms=transform,
target_transforms=None,
eval_mode=image_set == 'val'
)
num_classes = 2
return ds, num_classes
# IoU calculation for validation
# def IoU(pred, gt):
# pred = pred.argmax(1)
# intersection = torch.sum(torch.mul(pred, gt))
# union = torch.sum(torch.add(pred, gt)) - intersection
# if intersection == 0 or union == 0:
# iou = 0
# else:
# iou = float(intersection) / float(union)
# return iou, intersection, union
def IoU(pred, gt):
pred = pred.argmax(1)
intersection = torch.sum(torch.mul(pred, gt))
union = torch.sum(torch.add(pred, gt)) - intersection
if intersection == 0 or union == 0:
iou = 0
else:
iou = float(intersection) / float(union)
return iou, intersection, union
def get_transform(args):
transforms = [T.Resize(args.img_size, args.img_size),
T.ToTensor(),
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
]
return T.Compose(transforms)
def criterion(input, target):
weight = torch.FloatTensor([0.9, 1.1]).cuda()
return nn.functional.cross_entropy(input, target, weight=weight)
def return_mask(emb_distance, verb_mask=None):
B_, B_ = emb_distance.shape
positive_mask = torch.zeros_like(emb_distance)
positive_mask.fill_diagonal_(1) # Set diagonal elements to 1 for all cases
if B_ < len(verb_mask):
# If B_ equals to 2*K (double the number of verb phrase)
for i in range(B_ // 2):
positive_mask[2 * i, 2 * i + 1] = 1
positive_mask[2 * i + 1, 2 * i] = 1
else:
# Process the case where we have a mix of sentences with and without verbs
i = 0
while i < B_:
if verb_mask[i] == 1:
positive_mask[i, i + 1] = 1
positive_mask[i + 1, i] = 1
i += 2
else:
i += 1
negative_mask = torch.ones_like(emb_distance) - positive_mask
return positive_mask, negative_mask
def UniAngularContrastLoss(total_fq, verb_mask, alpha=0.5, verbonly=True, m=0.5, tau=0.05, args=None):
_, C, H, W = total_fq.shape
if verbonly :
B = total_fq[verb_mask].shape[0]
emb = torch.mean(total_fq[verb_mask], dim=(-1, -2)).reshape(B, C)
assert emb.shape[0] % 2 == 0, f"Embedding count {emb.shape[0]} is not divisible by 2."
else :
emb = torch.mean(total_fq, dim=-1)
B_ = emb.shape[0]
emb_i = emb.unsqueeze(1).repeat(1, B_, 1) # (B_, B_, C)
emb_j = emb.unsqueeze(0).repeat(B_, 1, 1) # (B_, B_, C)
sim = nn.CosineSimilarity(dim=-1, eps=1e-6)
sim_matrix = sim(emb_i, emb_j).reshape(B_, B_) # (B_, B_)
sim_matrix = torch.clamp(sim_matrix, min=-0.9999, max=0.9999)
positive_mask, negative_mask = return_mask(sim_matrix, verb_mask)
if len(positive_mask) > 0 :
sim_matrix_with_margin = sim_matrix.clone()
sim_matrix_with_margin[positive_mask.bool()] = torch.cos(torch.acos(sim_matrix[positive_mask.bool()]) + m / 57.2958)
logits = sim_matrix_with_margin / tau
exp_logits = torch.exp(logits)
pos_exp_logits = exp_logits * positive_mask.long()
pos_exp_logits = pos_exp_logits.sum(dim=-1)
# print("pos_exp_logits: ", pos_exp_logits.shape)
total_exp_logits = exp_logits.sum(dim=-1)
positive_loss = -torch.log(pos_exp_logits / total_exp_logits)
angular_loss = positive_loss.mean()
return angular_loss
else :
return torch.tensor(0.0, device=total_fq.device)
def UniAngularLogitContrastLoss(total_fq, verb_mask, alpha=0.5, verbonly=True, m=0.5, tau=0.05, args=None):
epsilon = 1e-10 # Stability term for numerical issues
_, C, H, W = total_fq.shape
# Calculate embeddings
if verbonly :
B = total_fq[verb_mask].shape[0]
emb = torch.mean(total_fq[verb_mask], dim=(-1, -2)).reshape(B, C)
assert emb.shape[0] % 2 == 0, f"Embedding count {emb.shape[0]} is not divisible by 2."
else :
emb = torch.mean(total_fq, dim=-1)
B_ = emb.shape[0]
emb_i = emb.unsqueeze(1).repeat(1, B_, 1) # (B_, B_, C)
emb_j = emb.unsqueeze(0).repeat(B_, 1, 1) # (B_, B_, C)
sim = nn.CosineSimilarity(dim=-1, eps=1e-6)
sim_matrix = sim(emb_i, emb_j).reshape(B_, B_) # (B_, B_)
sim_matrix = torch.clamp(sim_matrix, min=-0.9999, max=0.9999)
margin_in_radians = m / 57.2958 # Convert degrees to radians
theta_matrix = (torch.pi / 2) - torch.acos(sim_matrix)
positive_mask, negative_mask = return_mask(sim_matrix, verb_mask)
theta_with_margin = theta_matrix.clone()
theta_with_margin[positive_mask.bool()] -= margin_in_radians # Subtract margin directly for positives
logits = theta_with_margin / tau # Scale with temperature
# Compute exponential logits for softmax
exp_logits = torch.exp(logits)
# pos_exp_logits = (exp_logits * positive_mask).sum(dim=-1) # Positive term
pos_exp_logits = exp_logits * positive_mask
pos_exp_logits = pos_exp_logits.sum(dim=-1)
# neg_exp_logits = (exp_logits * negative_mask).sum(dim=-1) # Negative term
# total_exp_logits = pos_exp_logits + neg_exp_logits
total_exp_logits = exp_logits.sum(dim=-1)
# pos_exp_logits = pos_exp_logits + epsilon
# total_exp_logits = total_exp_logits + epsilon
# Compute angular loss
loss = -torch.log(pos_exp_logits / total_exp_logits)
angular_loss = loss.mean()
return angular_loss
def evaluate(model, data_loader, bert_model):
#print("current model : ", model)
model.eval()
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Test:'
total_its = 0
acc_ious = 0
# evaluation variables
cum_I, cum_U = 0, 0
eval_seg_iou_list = [.5, .6, .7, .8, .9]
seg_correct = np.zeros(len(eval_seg_iou_list), dtype=np.int32)
seg_total = 0
mean_IoU = []
mean_acc = []
with torch.no_grad():
for data in metric_logger.log_every(data_loader, 100, header):
total_its += 1
# Unpack data
image, target, source_type, sentences, attentions = data
image, target, sentences, attentions = (
image.cuda(non_blocking=True),
target.cuda(non_blocking=True),
sentences.cuda(non_blocking=True),
attentions.cuda(non_blocking=True)
)
# Squeeze unnecessary dimensions
sentences = sentences.squeeze(-1)
attentions = attentions.squeeze(-1)
# Model inference
if bert_model is not None:
last_hidden_states = bert_model(sentences, attention_mask=attentions)[0]
embedding = last_hidden_states.permute(0, 2, 1) # [B, N, 768] -> [B, 768, N]
attentions = attentions.unsqueeze(-1) # [B, N] -> [B, N, 1]
output = model(image, embedding, l_mask=attentions)
else:
output = model(image, sentences, l_mask=attentions, is_train=False)
# Zero target case
if source_type[0] == 'zero':
pred = output.argmax(1)
incorrect_num = torch.sum(pred).item() # Count non-zero predictions
acc = 1 if incorrect_num == 0 else 0
mean_acc.append(acc)
else:
# Non-zero target case
this_iou, I, U = IoU(output, target) # Use the provided IoU function
mean_IoU.append(this_iou)
cum_I += I
cum_U += U
for n_eval_iou in range(len(eval_seg_iou_list)):
eval_seg_iou = eval_seg_iou_list[n_eval_iou]
seg_correct[n_eval_iou] += (this_iou >= eval_seg_iou)
seg_total += 1
mIoU = np.mean(mean_IoU)
mean_acc = np.mean(mean_acc)
print('Final results:')
print('Mean IoU is %.2f\n' % (mIoU * 100.))
results_str = ''
precs = []
for n_eval_iou in range(len(eval_seg_iou_list)):
results_str += ' precision@%s = %.2f\n' % \
(str(eval_seg_iou_list[n_eval_iou]), seg_correct[n_eval_iou] * 100. / seg_total)
precs.append(seg_correct[n_eval_iou] * 100. / seg_total)
results_str += ' overall IoU = %.2f\n' % (cum_I * 100. / cum_U)
results_str += ' mean IoU = %.2f\n' % (mIoU * 100.)
print(results_str)
if args.dataset == 'ref-zom':
print('Mean accuracy for one-to-zero sample is %.2f\n' % (mean_acc*100))
return mIoU, 100 * cum_I / cum_U, precs
def train_one_epoch(model, criterion, optimizer, data_loader, lr_scheduler, epoch, print_freq,
iterations, bert_model, metric_learning=False, args=None):
model.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value}'))
header = 'Epoch: [{}]'.format(epoch)
train_loss = 0
total_its = 0
mlw = args.metric_loss_weight
metric_mode = args.metric_mode
if not metric_learning:
mlw = 0
for data in metric_logger.log_every(data_loader, print_freq, header):
#print("data : ", data)
total_its += 1
# Ref-Zom Repro
image, target, source_type, sentences, attentions, pos_sent, pos_attn_mask, pos_type = data
source_type = np.array(source_type)
target_flag = torch.tensor(np.where(source_type == 'zero', 0, 1))
if args.addzero :
hardpos_flag = torch.tensor(np.where(pos_type == 'hardpos', 1, 0))
else :
# default option for training : only include one, many targets!
hardpos_flag = torch.tensor(np.where((source_type != 'zero') & (pos_type == 'hardpos'), 1, 0))
sentences = sentences.squeeze(1)
attentions = attentions.squeeze(1)
pos_sent = pos_sent.squeeze(1)
pos_attn_mask = pos_attn_mask.squeeze(1)
## ver 1 : hardpos flag outside the model
verb_masks = []
cl_masks = []
images = []
targets = []
sentences_ = []
attentions_ = []
for idx in range(len(image)) :
# Append original data
sentences_.append(sentences[idx])
images.append(image[idx])
targets.append(target[idx])
attentions_.append(attentions[idx])
if hardpos_flag[idx] :
verb_masks.extend([1, 1])
cl_masks.extend([1, 0])
sentences_.append(pos_sent[idx])
images.append(image[idx])
targets.append(target[idx])
attentions_.append(pos_attn_mask[idx])
else:
verb_masks.append(0)
cl_masks.append(1)
image, target, sentences, attentions, verb_masks, cl_masks = \
torch.stack(images).cuda(non_blocking=True),\
torch.stack(targets).cuda(non_blocking=True),\
torch.stack(sentences_).cuda(non_blocking=True),\
torch.stack(attentions_).cuda(non_blocking=True),\
torch.tensor(verb_masks, dtype=torch.bool, device='cuda'),\
torch.tensor(cl_masks, dtype=torch.bool, device='cuda')
loss = 0
metric_loss = 0
if bert_model is not None:
last_hidden_states = bert_model(sentences, attention_mask=attentions)[0] # (6, 10, 768)
embedding = last_hidden_states.permute(0, 2, 1) # (B, 768, N_l) to make Conv1d happy
attentions = attentions.unsqueeze(dim=-1) # (batch, N_l, 1)
output = model(image, embedding, l_mask=attentions)
else:
output, metric_tensors = model(image, sentences, l_mask=attentions)
ce_loss = criterion(output[cl_masks], target[cl_masks])
if metric_learning:
hardpos_count = sum(hardpos_flag)
divn = 1
if hardpos_count >= 3:
metric_loss = UniAngularLogitContrastLoss(metric_tensors, verb_masks, m=args.margin_value, tau=args.temperature, verbonly=True, args=args)
divn+=mlw # (1+mlw)
else:
metric_loss = 0
else:
metric_loss = 0
divn = 1
# if metric_learning and sum(hardpos_flag) > 0 :
# metric_loss = UniAngularLogitContrastLoss(metric_tensors, verb_masks, m=args.margin_value, tau=args.temperature, verbonly=True, args=args)
loss = (ce_loss + metric_loss * mlw) / divn
optimizer.zero_grad() # set_to_none=True is only available in pytorch 1.6+
loss.backward()
optimizer.step()
lr_scheduler.step()
torch.cuda.synchronize()
train_loss += loss.item()
iterations += 1
metric_logger.update(loss=loss.item(), lr=optimizer.param_groups[0]["lr"])
del image, target, sentences, attentions, loss, output, data
if bert_model is not None:
del last_hidden_states, embedding
gc.collect()
torch.cuda.empty_cache()
torch.cuda.synchronize()
loss_log = {
'loss': metric_logger.meters['loss'].global_avg
}
return iterations, loss_log
def main(args):
writer = SummaryWriter('./experiments/{}/{}'.format("_".join([args.dataset, args.splitBy]), args.model_id))
dataset, num_classes = get_dataset("train",
get_transform(args=args),
args=args,
eval_mode=False)
dataset_test, _ = get_dataset(args.split,
get_transform(args=args),
args=args,
eval_mode=True)
# batch sampler
print(f"local rank {args.local_rank} / global rank {utils.get_rank()} successfully built train dataset.")
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
if args.dataset == 'ref-zom':
train_sampler = Refzom_DistributedSampler(dataset, num_replicas=num_tasks, rank=global_rank,
shuffle=True)
else:
train_sampler = torch.utils.data.distributed.DistributedSampler(dataset, num_replicas=num_tasks, rank=global_rank,
shuffle=True)
test_sampler = torch.utils.data.SequentialSampler(dataset_test)
# data loader
data_loader = torch.utils.data.DataLoader(
dataset, batch_size=args.batch_size,
sampler=train_sampler, num_workers=args.workers, pin_memory=args.pin_mem, drop_last=True)
data_loader_test = torch.utils.data.DataLoader(
dataset_test, batch_size=1, sampler=test_sampler, num_workers=args.workers)
# model initialization
print(args.model)
model = segmentation.__dict__[args.model](pretrained=args.pretrained_swin_weights,
args=args)
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
model.cuda()
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], find_unused_parameters=True)
single_model = model.module
if args.model != 'lavt_one':
model_class = BertModel
bert_model = model_class.from_pretrained(args.ck_bert)
bert_model.pooler = None # a work-around for a bug in Transformers = 3.0.2 that appears for DistributedDataParallel
bert_model.cuda()
bert_model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(bert_model)
bert_model = torch.nn.parallel.DistributedDataParallel(bert_model, device_ids=[args.local_rank])
single_bert_model = bert_model.module
else:
bert_model = None
single_bert_model = None
# resume training
if args.resume:
checkpoint = torch.load(args.resume, map_location='cpu')
single_model.load_state_dict(checkpoint['model'])
if args.model != 'lavt_one':
single_bert_model.load_state_dict(checkpoint['bert_model'])
# parameters to optimize
backbone_no_decay = list()
backbone_decay = list()
for name, m in single_model.backbone.named_parameters():
if 'norm' in name or 'absolute_pos_embed' in name or 'relative_position_bias_table' in name:
backbone_no_decay.append(m)
else:
backbone_decay.append(m)
if args.model != 'lavt_one':
params_to_optimize = [
{'params': backbone_no_decay, 'weight_decay': 0.0},
{'params': backbone_decay},
{"params": [p for p in single_model.classifier.parameters() if p.requires_grad]},
# the following are the parameters of bert
{"params": reduce(operator.concat,
[[p for p in single_bert_model.encoder.layer[i].parameters()
if p.requires_grad] for i in range(10)])},
]
else:
params_to_optimize = [
{'params': backbone_no_decay, 'weight_decay': 0.0},
{'params': backbone_decay},
{"params": [p for p in single_model.classifier.parameters() if p.requires_grad]},
# the following are the parameters of bert
{"params": reduce(operator.concat,
[[p for p in single_model.text_encoder.encoder.layer[i].parameters()
if p.requires_grad] for i in range(10)])},
]
# params_to_optimize = [
# {'params': backbone_no_decay, 'weight_decay': 0.0},
# {'params': backbone_decay},
# {"params": [p for p in single_model.classifier.parameters() if p.requires_grad]},
# # the following are the parameters of bert
# {"params": reduce(operator.concat,
# [[p for p in single_model.text_encoder.encoder.layer[i].parameters()
# if p.requires_grad] for i in range(10)]), 'lr': args.lr/10},
# ]
# optimizer
optimizer = torch.optim.AdamW(params_to_optimize,
lr=args.lr,
weight_decay=args.weight_decay,
amsgrad=args.amsgrad
)
# learning rate scheduler
lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer,
lambda x: (1 - x / (len(data_loader) * args.epochs)) ** 0.9)
# housekeeping
start_time = time.time()
iterations = 0
best_oIoU = -0.1
# resume training (optimizer, lr scheduler, and the epoch)
if args.resume:
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
resume_epoch = checkpoint['epoch']
else:
resume_epoch = -999
# training loops
for epoch in range(max(0, resume_epoch+1), args.epochs):
data_loader.sampler.set_epoch(epoch)
itrs_temp, loss_log = train_one_epoch(model, criterion, optimizer, data_loader, lr_scheduler, epoch, args.print_freq,
iterations, bert_model, metric_learning=args.metric_learning, args=args)
iou, overallIoU, precs = evaluate(model, data_loader_test, bert_model)
print('Average object IoU {}'.format(iou))
print('Overall IoU {}'.format(overallIoU))
save_checkpoint = (best_oIoU < overallIoU)
if save_checkpoint:
print('Better epoch: {}\n'.format(epoch))
if single_bert_model is not None:
dict_to_save = {'model': single_model.state_dict(), 'bert_model': single_bert_model.state_dict(),
'optimizer': optimizer.state_dict(), 'epoch': epoch, 'args': args,
'lr_scheduler': lr_scheduler.state_dict()}
else:
dict_to_save = {'model': single_model.state_dict(),
'optimizer': optimizer.state_dict(), 'epoch': epoch, 'args': args,
'lr_scheduler': lr_scheduler.state_dict()}
utils.save_on_master(dict_to_save, os.path.join(args.output_dir,
'model_best_{}.pth'.format(args.model_id)))
best_oIoU = overallIoU
if utils.is_main_process():
writer.add_scalar('val/mIoU', iou, epoch)
writer.add_scalar('val/oIoU', overallIoU, epoch)
writer.add_scalar('val/Prec/50', precs[0], epoch)
writer.add_scalar('val/Prec/60', precs[1], epoch)
writer.add_scalar('val/Prec/70', precs[2], epoch)
writer.add_scalar('val/Prec/80', precs[3], epoch)
writer.add_scalar('val/Prec/90', precs[4], epoch)
writer.add_scalar('train/loss', loss_log['loss'], epoch)
writer.flush()
# summarize
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == "__main__":
from args import get_parser
parser = get_parser()
args = parser.parse_args()
# set up distributed learning
if "LOCAL_RANK" in os.environ:
local_rank = int(os.environ["LOCAL_RANK"])
else:
local_rank = 0 # Default value for non-distributed mode
print(f"Local Rank: {local_rank}, World Size: {os.environ.get('WORLD_SIZE', '1')}")
utils.init_distributed_mode(args)
print('Image size: {}'.format(str(args.img_size)))
print('Metric Learning Ops')
print('metric learning flag : ', args.metric_learning)
print('metric loss weight : ', args.metric_loss_weight)
print('metric mode and hardpos selection : ', args.metric_mode, args.hp_selection)
print('margin value : ', args.margin_value)
print('temperature : ', args.temperature)
print('add zero in ACE loss : ', args.addzero)
print(args)
main(args)
|