File size: 2,367 Bytes
d610464
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
base_model: meta-llama/Meta-Llama-3-8B-Instruct
library_name: peft
license: llama3
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: llama-qLoRA
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/dhanishetty-personaluse/huggingface/runs/7iegxn0n)
# llama-qLoRA

This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9017

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: inverse_sqrt
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.1337        | 0.2022 | 100  | 1.1567          |
| 0.9957        | 0.4044 | 200  | 0.9863          |
| 0.9269        | 0.6067 | 300  | 0.9463          |
| 0.944         | 0.8089 | 400  | 0.9343          |
| 0.8779        | 1.0111 | 500  | 0.9271          |
| 0.8902        | 1.2133 | 600  | 0.9218          |
| 0.9149        | 1.4156 | 700  | 0.9156          |
| 0.8801        | 1.6178 | 800  | 0.9126          |
| 0.8752        | 1.8200 | 900  | 0.9093          |
| 0.8477        | 2.0222 | 1000 | 0.9068          |
| 0.8506        | 2.2245 | 1100 | 0.9067          |
| 0.8676        | 2.4267 | 1200 | 0.9048          |
| 0.8504        | 2.6289 | 1300 | 0.9028          |
| 0.8617        | 2.8311 | 1400 | 0.9017          |


### Framework versions

- PEFT 0.11.1
- Transformers 4.42.4
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1