Dennis G
commited on
Commit
·
bbd3546
1
Parent(s):
0b18017
update model card README.md
Browse files
README.md
CHANGED
@@ -2,11 +2,24 @@
|
|
2 |
license: apache-2.0
|
3 |
tags:
|
4 |
- generated_from_trainer
|
|
|
|
|
5 |
metrics:
|
6 |
- accuracy
|
7 |
model-index:
|
8 |
- name: swin-tiny-patch4-window7-224-finetuned-eurosat
|
9 |
-
results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
---
|
11 |
|
12 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -14,10 +27,10 @@ should probably proofread and complete it, then remove this comment. -->
|
|
14 |
|
15 |
# swin-tiny-patch4-window7-224-finetuned-eurosat
|
16 |
|
17 |
-
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on
|
18 |
It achieves the following results on the evaluation set:
|
19 |
-
- Loss: 0.
|
20 |
-
- Accuracy: 0.
|
21 |
|
22 |
## Model description
|
23 |
|
@@ -45,19 +58,67 @@ The following hyperparameters were used during training:
|
|
45 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
- lr_scheduler_type: linear
|
47 |
- lr_scheduler_warmup_ratio: 0.1
|
48 |
-
- num_epochs:
|
49 |
|
50 |
### Training results
|
51 |
|
52 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
53 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
54 |
-
| 1.
|
55 |
-
|
|
56 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
|
59 |
### Framework versions
|
60 |
|
61 |
- Transformers 4.20.1
|
62 |
- Pytorch 1.11.0+cu113
|
|
|
63 |
- Tokenizers 0.12.1
|
|
|
2 |
license: apache-2.0
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- imagefolder
|
7 |
metrics:
|
8 |
- accuracy
|
9 |
model-index:
|
10 |
- name: swin-tiny-patch4-window7-224-finetuned-eurosat
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Image Classification
|
14 |
+
type: image-classification
|
15 |
+
dataset:
|
16 |
+
name: imagefolder
|
17 |
+
type: imagefolder
|
18 |
+
args: default
|
19 |
+
metrics:
|
20 |
+
- name: Accuracy
|
21 |
+
type: accuracy
|
22 |
+
value: 0.8464730290456431
|
23 |
---
|
24 |
|
25 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
27 |
|
28 |
# swin-tiny-patch4-window7-224-finetuned-eurosat
|
29 |
|
30 |
+
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
|
31 |
It achieves the following results on the evaluation set:
|
32 |
+
- Loss: 0.3266
|
33 |
+
- Accuracy: 0.8465
|
34 |
|
35 |
## Model description
|
36 |
|
|
|
58 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
59 |
- lr_scheduler_type: linear
|
60 |
- lr_scheduler_warmup_ratio: 0.1
|
61 |
+
- num_epochs: 50
|
62 |
|
63 |
### Training results
|
64 |
|
65 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
66 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
67 |
+
| 1.2941 | 1.0 | 17 | 1.1717 | 0.4689 |
|
68 |
+
| 1.0655 | 2.0 | 34 | 0.9397 | 0.5560 |
|
69 |
+
| 0.8008 | 3.0 | 51 | 0.6153 | 0.7303 |
|
70 |
+
| 0.7204 | 4.0 | 68 | 0.5665 | 0.7427 |
|
71 |
+
| 0.6931 | 5.0 | 85 | 0.4670 | 0.7801 |
|
72 |
+
| 0.6277 | 6.0 | 102 | 0.4328 | 0.8465 |
|
73 |
+
| 0.5689 | 7.0 | 119 | 0.4078 | 0.8174 |
|
74 |
+
| 0.6103 | 8.0 | 136 | 0.4060 | 0.8091 |
|
75 |
+
| 0.5501 | 9.0 | 153 | 0.4842 | 0.7884 |
|
76 |
+
| 0.6018 | 10.0 | 170 | 0.3780 | 0.8423 |
|
77 |
+
| 0.5668 | 11.0 | 187 | 0.3551 | 0.8631 |
|
78 |
+
| 0.5192 | 12.0 | 204 | 0.4514 | 0.8216 |
|
79 |
+
| 0.5133 | 13.0 | 221 | 0.3598 | 0.8174 |
|
80 |
+
| 0.5753 | 14.0 | 238 | 0.4172 | 0.8091 |
|
81 |
+
| 0.4833 | 15.0 | 255 | 0.4685 | 0.8050 |
|
82 |
+
| 0.5546 | 16.0 | 272 | 0.4474 | 0.7842 |
|
83 |
+
| 0.5179 | 17.0 | 289 | 0.4570 | 0.7884 |
|
84 |
+
| 0.5017 | 18.0 | 306 | 0.4218 | 0.8050 |
|
85 |
+
| 0.4808 | 19.0 | 323 | 0.4094 | 0.8050 |
|
86 |
+
| 0.4708 | 20.0 | 340 | 0.4693 | 0.7759 |
|
87 |
+
| 0.5033 | 21.0 | 357 | 0.3141 | 0.8672 |
|
88 |
+
| 0.4859 | 22.0 | 374 | 0.3687 | 0.8257 |
|
89 |
+
| 0.516 | 23.0 | 391 | 0.3819 | 0.8216 |
|
90 |
+
| 0.4822 | 24.0 | 408 | 0.3391 | 0.8506 |
|
91 |
+
| 0.4748 | 25.0 | 425 | 0.3281 | 0.8506 |
|
92 |
+
| 0.4914 | 26.0 | 442 | 0.3308 | 0.8631 |
|
93 |
+
| 0.4354 | 27.0 | 459 | 0.3859 | 0.8133 |
|
94 |
+
| 0.4297 | 28.0 | 476 | 0.3761 | 0.8133 |
|
95 |
+
| 0.4747 | 29.0 | 493 | 0.2914 | 0.8672 |
|
96 |
+
| 0.4395 | 30.0 | 510 | 0.3025 | 0.8548 |
|
97 |
+
| 0.4279 | 31.0 | 527 | 0.3314 | 0.8506 |
|
98 |
+
| 0.4327 | 32.0 | 544 | 0.4626 | 0.7842 |
|
99 |
+
| 0.446 | 33.0 | 561 | 0.3499 | 0.8382 |
|
100 |
+
| 0.4011 | 34.0 | 578 | 0.3408 | 0.8465 |
|
101 |
+
| 0.4418 | 35.0 | 595 | 0.3159 | 0.8589 |
|
102 |
+
| 0.484 | 36.0 | 612 | 0.3130 | 0.8548 |
|
103 |
+
| 0.4119 | 37.0 | 629 | 0.2899 | 0.8589 |
|
104 |
+
| 0.4453 | 38.0 | 646 | 0.3200 | 0.8465 |
|
105 |
+
| 0.4074 | 39.0 | 663 | 0.3493 | 0.8465 |
|
106 |
+
| 0.3937 | 40.0 | 680 | 0.3003 | 0.8672 |
|
107 |
+
| 0.4222 | 41.0 | 697 | 0.3547 | 0.8299 |
|
108 |
+
| 0.3922 | 42.0 | 714 | 0.3206 | 0.8589 |
|
109 |
+
| 0.3973 | 43.0 | 731 | 0.4074 | 0.8133 |
|
110 |
+
| 0.4118 | 44.0 | 748 | 0.3147 | 0.8589 |
|
111 |
+
| 0.4088 | 45.0 | 765 | 0.3393 | 0.8506 |
|
112 |
+
| 0.3635 | 46.0 | 782 | 0.3584 | 0.8257 |
|
113 |
+
| 0.403 | 47.0 | 799 | 0.3240 | 0.8506 |
|
114 |
+
| 0.3943 | 48.0 | 816 | 0.3536 | 0.8216 |
|
115 |
+
| 0.4085 | 49.0 | 833 | 0.3270 | 0.8465 |
|
116 |
+
| 0.3865 | 50.0 | 850 | 0.3266 | 0.8465 |
|
117 |
|
118 |
|
119 |
### Framework versions
|
120 |
|
121 |
- Transformers 4.20.1
|
122 |
- Pytorch 1.11.0+cu113
|
123 |
+
- Datasets 2.3.2
|
124 |
- Tokenizers 0.12.1
|