File size: 1,682 Bytes
d0dd0ff
4a08e32
 
 
28d2142
4a08e32
 
 
 
 
d0dd0ff
 
4a08e32
 
d0dd0ff
4a08e32
d0dd0ff
4a08e32
076b1b3
 
 
d0dd0ff
4a08e32
d0dd0ff
4a08e32
d0dd0ff
4a08e32
d0dd0ff
4a08e32
d0dd0ff
4a08e32
d0dd0ff
4a08e32
d0dd0ff
4a08e32
d0dd0ff
4a08e32
d0dd0ff
4a08e32
 
 
 
 
 
 
 
076b1b3
4a08e32
d0dd0ff
4a08e32
d0dd0ff
076b1b3
 
 
 
 
 
d0dd0ff
 
4a08e32
d0dd0ff
4a08e32
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
license: apache-2.0
tags:
- generated_from_trainer
base_model: facebook/wav2vec2-xls-r-300m
datasets:
- zeroth_korean
model-index:
- name: wav2vec2-large-xls-r-300m-korean-g
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-large-xls-r-300m-korean-g

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the zeroth_korean dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9772
- Cer: 0.1921

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Cer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 4.6433        | 6.49  | 500  | 3.2068          | 0.8114 |
| 0.9293        | 12.99 | 1000 | 0.9364          | 0.2254 |
| 0.2504        | 19.48 | 1500 | 0.9958          | 0.2097 |
| 0.1488        | 25.97 | 2000 | 0.9772          | 0.1921 |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.0.1+cu118
- Datasets 2.18.0
- Tokenizers 0.15.2