File size: 1,682 Bytes
d0dd0ff 4a08e32 28d2142 4a08e32 d0dd0ff 4a08e32 d0dd0ff 4a08e32 d0dd0ff 4a08e32 076b1b3 d0dd0ff 4a08e32 d0dd0ff 4a08e32 d0dd0ff 4a08e32 d0dd0ff 4a08e32 d0dd0ff 4a08e32 d0dd0ff 4a08e32 d0dd0ff 4a08e32 d0dd0ff 4a08e32 d0dd0ff 4a08e32 076b1b3 4a08e32 d0dd0ff 4a08e32 d0dd0ff 076b1b3 d0dd0ff 4a08e32 d0dd0ff 4a08e32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
---
license: apache-2.0
tags:
- generated_from_trainer
base_model: facebook/wav2vec2-xls-r-300m
datasets:
- zeroth_korean
model-index:
- name: wav2vec2-large-xls-r-300m-korean-g
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-korean-g
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the zeroth_korean dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9772
- Cer: 0.1921
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Cer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 4.6433 | 6.49 | 500 | 3.2068 | 0.8114 |
| 0.9293 | 12.99 | 1000 | 0.9364 | 0.2254 |
| 0.2504 | 19.48 | 1500 | 0.9958 | 0.2097 |
| 0.1488 | 25.97 | 2000 | 0.9772 | 0.1921 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.0.1+cu118
- Datasets 2.18.0
- Tokenizers 0.15.2
|