File size: 1,568 Bytes
d0dd0ff 4a08e32 9caeb32 4a08e32 0638afe 4a08e32 d0dd0ff 4a08e32 d0dd0ff 4a08e32 d0dd0ff 0638afe c774417 5c497a7 d0dd0ff 4a08e32 d0dd0ff 4a08e32 d0dd0ff 4a08e32 d0dd0ff 4a08e32 d0dd0ff 4a08e32 d0dd0ff 4a08e32 d0dd0ff 4a08e32 d0dd0ff 4a08e32 d0dd0ff 4a08e32 179ac23 4a08e32 179ac23 4a08e32 d0dd0ff 4a08e32 d0dd0ff 179ac23 5c497a7 d0dd0ff 4a08e32 d0dd0ff 4a08e32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
---
license: apache-2.0
tags:
- generated_from_trainer
base_model: facebook/wav2vec2-xls-r-300m
datasets:
- make_dataset
model-index:
- name: wav2vec2-large-xls-r-300m-korean-g
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-korean-g
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the make_dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 245.9002
- Cer: 0.8609
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 1000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Cer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 19.5527 | 500.0 | 500 | 105.0973 | 0.9536 |
| 0.486 | 1000.0 | 1000 | 245.9002 | 0.8609 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.0.1+cu118
- Datasets 2.18.0
- Tokenizers 0.15.2
|