File size: 1,568 Bytes
d0dd0ff
4a08e32
 
 
9caeb32
4a08e32
0638afe
4a08e32
 
 
d0dd0ff
 
4a08e32
 
d0dd0ff
4a08e32
d0dd0ff
0638afe
c774417
5c497a7
 
d0dd0ff
4a08e32
d0dd0ff
4a08e32
d0dd0ff
4a08e32
d0dd0ff
4a08e32
d0dd0ff
4a08e32
d0dd0ff
4a08e32
d0dd0ff
4a08e32
d0dd0ff
4a08e32
d0dd0ff
4a08e32
 
179ac23
4a08e32
 
 
 
 
179ac23
4a08e32
d0dd0ff
4a08e32
d0dd0ff
179ac23
 
5c497a7
 
d0dd0ff
 
4a08e32
d0dd0ff
4a08e32
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
---
license: apache-2.0
tags:
- generated_from_trainer
base_model: facebook/wav2vec2-xls-r-300m
datasets:
- make_dataset
model-index:
- name: wav2vec2-large-xls-r-300m-korean-g
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-large-xls-r-300m-korean-g

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the make_dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 245.9002
- Cer: 0.8609

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 1000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Cer    |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 19.5527       | 500.0  | 500  | 105.0973        | 0.9536 |
| 0.486         | 1000.0 | 1000 | 245.9002        | 0.8609 |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.0.1+cu118
- Datasets 2.18.0
- Tokenizers 0.15.2