Qwen2-72B-Orpo-v0.1 / README.md
dfurman's picture
Update README.md
a51f6b9 verified
---
language:
- en
license: other
library_name: transformers
tags:
- orpo
- qwen2
- rlhf
- sft
base_model:
- Qwen/Qwen2-72B-Instruct
datasets:
- mlabonne/orpo-dpo-mix-40k
license_name: tongyi-qianwen
license_link: https://huggingface.co/Qwen/Qwen2-72B-Instruct/blob/main/LICENSE
model-index:
- name: Qwen2-72B-Orpo-v0.1
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 78.8
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=dfurman/Qwen2-72B-Orpo-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 57.41
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=dfurman/Qwen2-72B-Orpo-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 35.42
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=dfurman/Qwen2-72B-Orpo-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 17.9
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=dfurman/Qwen2-72B-Orpo-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 20.87
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=dfurman/Qwen2-72B-Orpo-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 49.5
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=dfurman/Qwen2-72B-Orpo-v0.1
name: Open LLM Leaderboard
---
# dfurman/Qwen2-72B-Orpo-v0.1
## Model
This model is a finetune of `Qwen/Qwen2-72B-Instruct` on 1.5k rows of `mlabonne/orpo-dpo-mix-40k`. It was trained as a generalist language model for a variety of text generation use cases, including support of agentic capabilities, roleplaying, reasoning, multi-turn conversations, long context coherence, and more.
Thanks go out to [mlabonne](https://huggingface.co/mlabonne), [Qwen](https://huggingface.com/Qwen), et al. for the source dataset and base model.
![image/png](https://cdn-uploads.huggingface.co/production/uploads/62afc20ca5bd7cef3e1ab3f4/CdV47RW1zjr7qvD073NkZ.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/62afc20ca5bd7cef3e1ab3f4/PB-25NSKcbFMZuZ3vYptR.png)
You can find the experiment on W&B at [this address](https://wandb.ai/dryanfurman/huggingface/runs/fw7mtub1?nw=nwuserdryanfurman).
## 💻 Usage
<details>
<summary>Setup</summary>
```python
!pip install -qU transformers accelerate bitsandbytes
!huggingface-cli download dfurman/Qwen2-72B-Orpo-v0.1
```
```python
from transformers import AutoTokenizer, BitsAndBytesConfig
import transformers
import torch
if torch.cuda.get_device_capability()[0] >= 8:
!pip install -qqq flash-attn
attn_implementation = "flash_attention_2"
torch_dtype = torch.bfloat16
else:
attn_implementation = "eager"
torch_dtype = torch.float16
# quantize if necessary
# bnb_config = BitsAndBytesConfig(
# load_in_4bit=True,
# bnb_4bit_quant_type="nf4",
# bnb_4bit_compute_dtype=torch_dtype,
# bnb_4bit_use_double_quant=True,
# )
model = "dfurman/Qwen2-72B-Orpo-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={
"torch_dtype": torch_dtype,
# "quantization_config": bnb_config,
"device_map": "auto",
"attn_implementation": attn_implementation,
}
)
```
</details>
### Run
```python
question = """The bakers at the Beverly Hills Bakery baked 200 loaves of bread on Monday morning.
They sold 93 loaves in the morning and 39 loaves in the afternoon.
A grocery store then returned 6 unsold loaves back to the bakery.
How many loaves of bread did the bakery have left?
Respond as succinctly as possible. Format the response as a completion of this table:
|step|subquestion|procedure|result|
|:---|:----------|:--------|:-----:|"""
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": question},
]
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
# print("***Prompt:\n", prompt)
outputs = pipeline(prompt, max_new_tokens=1000, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print("***Generation:")
print(outputs[0]["generated_text"][len(prompt):])
```
```
***Generation:
|1|Initial loaves|Start with total loaves|200|
|2|Sold in morning|Subtract morning sales|200 - 93 = 107|
|3|Sold in afternoon|Subtract afternoon sales|107 - 39 = 68|
|4|Returned loaves|Add returned loaves|68 + 6 = 74|
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_dfurman__Qwen2-72B-Orpo-v0.1)
| Metric |Value|
|-------------------|----:|
|Avg. |43.32|
|IFEval (0-Shot) |78.80|
|BBH (3-Shot) |57.41|
|MATH Lvl 5 (4-Shot)|35.42|
|GPQA (0-shot) |17.90|
|MuSR (0-shot) |20.87|
|MMLU-PRO (5-shot) |49.50|