File size: 14,453 Bytes
f6e14ad 21e7473 f6e14ad 21e7473 f6e14ad 21e7473 f6e14ad 21e7473 f6e14ad 21e7473 f6e14ad 21e7473 f6e14ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f932ab17950>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f932ab179e0>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f932ab17a70>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f932ab17b00>",
"_build": "<function ActorCriticPolicy._build at 0x7f932ab17b90>",
"forward": "<function ActorCriticPolicy.forward at 0x7f932ab17c20>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f932ab17cb0>",
"_predict": "<function ActorCriticPolicy._predict at 0x7f932ab17d40>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f932ab17dd0>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f932ab17e60>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f932ab17ef0>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x7f932aaec630>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"num_timesteps": 1507328,
"_total_timesteps": 1500000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1652000470.2462664,
"learning_rate": 0.0003,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gASVXwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX2ZpbGxfZnVuY3Rpb26Uk5QoaACMD19tYWtlX3NrZWxfZnVuY5STlGgAjA1fYnVpbHRpbl90eXBllJOUjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlEsBfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdYeUUpR9lCiMB2dsb2JhbHOUfZSMCGRlZmF1bHRzlE6MBGRpY3SUfZSMDmNsb3N1cmVfdmFsdWVzlF2URz8zqSowVTJhYYwGbW9kdWxllGgZjARuYW1llGgPjANkb2OUTowXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC2Fubm90YXRpb25zlH2UjAhxdWFsbmFtZZSMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjAprd2RlZmF1bHRzlE51dFIu"
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAswLCvZ8onbtSt8I8sB40PKlE4rxyYB09AACAPwAAgD+Nj949FY0FP1hgr7x68Au/KFvTPWoY3r0AAAAAAAAAAJrY1L17lJa4nzywu/s5Bjb1nng7Did6tQAAAAAAAAAADf0HvpUWlD+seh2/uaIJv4EdDL5z+pW+AAAAAAAAAAAA1lC9UKu2P1O82b7stYq9j2YGvX2STb4AAAAAAAAAAJ1WWb5jFPc+G71fPlSo7r7L8L68f7gwvAAAAAAAAAAAzXSOuylobLqKVTC1KzyasIre3ThmqVo0AACAPwAAgD+aTpO87N+Lu3KLED6VdoM823rvvCpEYT0AAIA/AACAP8BL3T0dNmQ/kx5EPnnCIr/bK3I+6d24PQAAAAAAAAAAEw+QPu5/uT66uIq+FmkDv7Jbij7a0xO+AAAAAAAAAAAAxhi9L+tGPgUS4LsVZbS+Z0nfPGphzDwAAAAAAAAAAKCmBz4oPq0/yI8vP7TjvL6mm509sH6JPgAAAAAAAAAAzZY/vI8PvT9xfKu9UsYVPbEJqLyambe8AAAAAAAAAACa60Q8n3OlP9q9sz1irBC/CiJIPP5lCj0AAAAAAAAAAFM6CL6fO6i7+LmOO9MQGTq7ku88EDABuwAAAAAAAAAAzVaFvAp6vD+A05m9Wykfvj0Rj7wxuQK8AAAAAAAAAACUdJRiLg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.004885333333333408,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gASVJhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQKIJFDFkcECUhpRSlIwBbJRN1QGMAXSUR0C1XFxyn1nNdX2UKGgGaAloD0MI/z147VKCcUCUhpRSlGgVS9loFkdAtVx7LidauHV9lChoBmgJaA9DCIqT+x1Kk3BAlIaUUpRoFUveaBZHQLVctIE8q4J1fZQoaAZoCWgPQwhDOGbZUz5yQJSGlFKUaBVL32gWR0C1XL91loUSdX2UKGgGaAloD0MIeJeL+E7mbkCUhpRSlGgVS8ZoFkdAtV0WEYfnwHV9lChoBmgJaA9DCGuad5xiVXFAlIaUUpRoFUvKaBZHQLVdGsGxD9h1fZQoaAZoCWgPQwi/gF64Mz1xQJSGlFKUaBVL4GgWR0C1XSo/Z/TcdX2UKGgGaAloD0MINKDejBoAckCUhpRSlGgVS+doFkdAtV09j5Kvm3V9lChoBmgJaA9DCAtBDkpYQ3JAlIaUUpRoFUvKaBZHQLVdRNXo1UF1fZQoaAZoCWgPQwjrw3qjFsFwQJSGlFKUaBVLwmgWR0C1XXo77sOYdX2UKGgGaAloD0MILLe0GlI+cUCUhpRSlGgVS+BoFkdAtV1/ps41g3V9lChoBmgJaA9DCOfj2lCxv3NAlIaUUpRoFUvGaBZHQLVdif16E8J1fZQoaAZoCWgPQwh9emzLQBFzQJSGlFKUaBVLvGgWR0C1XY5OrQw9dX2UKGgGaAloD0MIFeRnI5cOckCUhpRSlGgVS81oFkdAtV2kyWRigHV9lChoBmgJaA9DCEVoBBvXnUhAlIaUUpRoFUuVaBZHQLVd41RceKd1fZQoaAZoCWgPQwhp/pjWJnpyQJSGlFKUaBVNBgFoFkdAtV4A/PgNw3V9lChoBmgJaA9DCL+2fvpPCW9AlIaUUpRoFUvcaBZHQLVec974SHx1fZQoaAZoCWgPQwjcnbXbLplyQJSGlFKUaBVL/WgWR0C1XnxTS9dvdX2UKGgGaAloD0MIOnR63g06cUCUhpRSlGgVS8FoFkdAtV7TzjFQ23V9lChoBmgJaA9DCM8sCVDTQnBAlIaUUpRoFUvSaBZHQLVe8r3j+711fZQoaAZoCWgPQwh1BduIJ15wQJSGlFKUaBVL52gWR0C1XvhsImgKdX2UKGgGaAloD0MIhnR4CCOYckCUhpRSlGgVS8ZoFkdAtV8h/FzdUXV9lChoBmgJaA9DCBghPNq4T3NAlIaUUpRoFU1dAWgWR0C1Xy+qebuudX2UKGgGaAloD0MIlDDT9u8ackCUhpRSlGgVS/ZoFkdAtV8vOoo/inV9lChoBmgJaA9DCLqe6LrwcXJAlIaUUpRoFUvAaBZHQLVfQPq9oOB1fZQoaAZoCWgPQwhA2ZQrvDNxQJSGlFKUaBVLzWgWR0C1X0IlY2bYdX2UKGgGaAloD0MIG2X9ZiIZcUCUhpRSlGgVTRIBaBZHQLVfWKMefZp1fZQoaAZoCWgPQwj2m4npwidzQJSGlFKUaBVL6mgWR0C1X2g/LTx5dX2UKGgGaAloD0MIFk1nJ8M4cUCUhpRSlGgVS+RoFkdAtV9sHkcS5HV9lChoBmgJaA9DCKFns+pzx3BAlIaUUpRoFUvDaBZHQLVfil+Vkc11fZQoaAZoCWgPQwhoIJbNnDJwQJSGlFKUaBVL2mgWR0C1X9N/nW8RdX2UKGgGaAloD0MIBvaYSGkpbkCUhpRSlGgVS8FoFkdAtWAT2exwAHV9lChoBmgJaA9DCEgzFk0nj3BAlIaUUpRoFUvOaBZHQLVmy+gDifh1fZQoaAZoCWgPQwj0piIVxmlyQJSGlFKUaBVL0mgWR0C1ZzQWepXIdX2UKGgGaAloD0MI86/llatWcECUhpRSlGgVS8JoFkdAtWdd+TeO43V9lChoBmgJaA9DCBQGZRrNkXBAlIaUUpRoFUvBaBZHQLVne2nKnvV1fZQoaAZoCWgPQwjWjAxy1w1zQJSGlFKUaBVLzWgWR0C1Z4Qxzq8ldX2UKGgGaAloD0MIYFlpUsp8cUCUhpRSlGgVS89oFkdAtWeICEHt4XV9lChoBmgJaA9DCI6yfjNxRXJAlIaUUpRoFUv+aBZHQLVntRoh6jZ1fZQoaAZoCWgPQwhNg6J5wERxQJSGlFKUaBVLyGgWR0C1Z7u2/i5vdX2UKGgGaAloD0MIzEBl/LvKckCUhpRSlGgVTQEBaBZHQLVnwTJyQxN1fZQoaAZoCWgPQwiVgQNaeptxQJSGlFKUaBVL1mgWR0C1Z9PvOQhfdX2UKGgGaAloD0MITKlLxnGYckCUhpRSlGgVS+9oFkdAtWffzSThYXV9lChoBmgJaA9DCCJQ/YMIlHFAlIaUUpRoFUvXaBZHQLVn+ru6VdJ1fZQoaAZoCWgPQwiH4LiMm1o6QJSGlFKUaBVLX2gWR0C1aAJUYKpldX2UKGgGaAloD0MIABsQIe4bc0CUhpRSlGgVS91oFkdAtWhS2mYShHV9lChoBmgJaA9DCJpC5zV25XFAlIaUUpRoFUvfaBZHQLVooTL4etF1fZQoaAZoCWgPQwjpD808eSxyQJSGlFKUaBVLxWgWR0C1aROvUz9CdX2UKGgGaAloD0MI+P2bF+crckCUhpRSlGgVS6toFkdAtWkzgeii7HV9lChoBmgJaA9DCAu0O6SYGm5AlIaUUpRoFUvUaBZHQLVpY9LpRoB1fZQoaAZoCWgPQwjDt7Bu/ApzQJSGlFKUaBVL2mgWR0C1aXeuaF23dX2UKGgGaAloD0MIDr3FwzufckCUhpRSlGgVS+VoFkdAtWmEuanaWXV9lChoBmgJaA9DCGxAhLgySnFAlIaUUpRoFUvLaBZHQLVpkOu7pV11fZQoaAZoCWgPQwi5wrtcRPxwQJSGlFKUaBVL1mgWR0C1acSRGMGYdX2UKGgGaAloD0MIpdk8DgMuckCUhpRSlGgVS9NoFkdAtWnL4Kx9onV9lChoBmgJaA9DCJ+QnbcxBXFAlIaUUpRoFUvsaBZHQLVqJwxnFpB1fZQoaAZoCWgPQwg8Ei9PJxNzQJSGlFKUaBVLxmgWR0C1ajNYGMXKdX2UKGgGaAloD0MIipKQSNupc0CUhpRSlGgVS/RoFkdAtWpENVinYXV9lChoBmgJaA9DCIVcqWfB2nBAlIaUUpRoFUvBaBZHQLVqdZxaPjp1fZQoaAZoCWgPQwjMXraddhFyQJSGlFKUaBVNBQJoFkdAtWqHGDL8rXV9lChoBmgJaA9DCE87/DUZKHFAlIaUUpRoFUvEaBZHQLVq9d9Ujs51fZQoaAZoCWgPQwjeO2pMCG9kQJSGlFKUaBVN6ANoFkdAtWsYMSbpeXV9lChoBmgJaA9DCG6I8ZrX/nJAlIaUUpRoFUvQaBZHQLVrMY0EX+F1fZQoaAZoCWgPQwjmCBnIs99wQJSGlFKUaBVLzmgWR0C1a1nSa3I/dX2UKGgGaAloD0MI8DSZ8fbpcECUhpRSlGgVS81oFkdAtWuBlg+hXnV9lChoBmgJaA9DCHReY5eoiHFAlIaUUpRoFUvfaBZHQLVrkqKP4mF1fZQoaAZoCWgPQwjSOqqa4L5yQJSGlFKUaBVL3mgWR0C1a5wvQF9sdX2UKGgGaAloD0MI0y6mma4ecUCUhpRSlGgVS9BoFkdAtWu3hQ3xWnV9lChoBmgJaA9DCMb4MHuZS3NAlIaUUpRoFUvuaBZHQLVr/l9Brvd1fZQoaAZoCWgPQwgG1nH8UO5xQJSGlFKUaBVLz2gWR0C1bCkr9VFQdX2UKGgGaAloD0MIcZF7urppcUCUhpRSlGgVS+FoFkdAtWxD07KaHHV9lChoBmgJaA9DCC0GD9O+YHJAlIaUUpRoFUvGaBZHQLVsR7HQyAR1fZQoaAZoCWgPQwiGyOnr+TZzQJSGlFKUaBVLymgWR0C1bGHQ6ZH/dX2UKGgGaAloD0MI5Xyx9yLecUCUhpRSlGgVS/toFkdAtWx0vTPSlXV9lChoBmgJaA9DCF8pyxAHLnBAlIaUUpRoFUvJaBZHQLVs5dkrf+F1fZQoaAZoCWgPQwgmqyLcZCxxQJSGlFKUaBVL42gWR0C1bQOhGpdbdX2UKGgGaAloD0MIRtJu9DHfcECUhpRSlGgVS9RoFkdAtW0ZiBoVVXV9lChoBmgJaA9DCIDY0qMplnBAlIaUUpRoFUvGaBZHQLVtIZydWhh1fZQoaAZoCWgPQwhYVpqUQlFwQJSGlFKUaBVL0WgWR0C1bWMHKOktdX2UKGgGaAloD0MIq3e4HRrbcECUhpRSlGgVS+FoFkdAtW2Z/lQuVXV9lChoBmgJaA9DCFN40Ow6y3BAlIaUUpRoFUvpaBZHQLVtuNayKN11fZQoaAZoCWgPQwiG4/kMKHdvQJSGlFKUaBVLx2gWR0C1bdIBV+7UdX2UKGgGaAloD0MIai+i7VhickCUhpRSlGgVS+loFkdAtW3Ukqtoz3V9lChoBmgJaA9DCHcwYp8AsXNAlIaUUpRoFUvLaBZHQLVuBn3+MqB1fZQoaAZoCWgPQwgFNufg2XNyQJSGlFKUaBVLxmgWR0C1bhXzH0btdX2UKGgGaAloD0MIETl9PR8dcECUhpRSlGgVS9ZoFkdAtW44FlkH2XV9lChoBmgJaA9DCDjXMENjd29AlIaUUpRoFUvNaBZHQLVuUvSc9W91fZQoaAZoCWgPQwjLZDiezwdxQJSGlFKUaBVL22gWR0C1bl8VpKzzdX2UKGgGaAloD0MIb0vkgnMYcUCUhpRSlGgVS91oFkdAtW7sxUNrkHV9lChoBmgJaA9DCEOM17yqCUtAlIaUUpRoFUuTaBZHQLVu9KeTV2B1fZQoaAZoCWgPQwiJYYcxaYlvQJSGlFKUaBVL0mgWR0C1bw+14Pf9dX2UKGgGaAloD0MIcsXFUXkKckCUhpRSlGgVS+xoFkdAtW9HZElVtHV9lChoBmgJaA9DCMmrcwyIhXJAlIaUUpRoFU0LAWgWR0C1b3uXu3MIdX2UKGgGaAloD0MI7x8L0SE6cECUhpRSlGgVS9JoFkdAtW/KMrEtNHV9lChoBmgJaA9DCO//44SJuG9AlIaUUpRoFUvIaBZHQLVv7Y4Qz1t1fZQoaAZoCWgPQwhIb7iP3K5AQJSGlFKUaBVLWmgWR0C1b/PVNHpbdX2UKGgGaAloD0MI0QSKWETSZ0CUhpRSlGgVTegDaBZHQLVv+FajesR1fZQoaAZoCWgPQwgkCi3rfjpxQJSGlFKUaBVLyWgWR0C1cAHTAnD0dX2UKGgGaAloD0MITmA6rdv0ckCUhpRSlGgVS+doFkdAtXAEL6UJOXV9lChoBmgJaA9DCGSUZ16ORnFAlIaUUpRoFUv1aBZHQLVwCdQO4G51ZS4="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 616,
"n_steps": 1024,
"gamma": 0.999,
"gae_lambda": 0.98,
"ent_coef": 0.01,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 4,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gASVXwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX2ZpbGxfZnVuY3Rpb26Uk5QoaACMD19tYWtlX3NrZWxfZnVuY5STlGgAjA1fYnVpbHRpbl90eXBllJOUjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlEsBfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdYeUUpR9lCiMB2dsb2JhbHOUfZSMCGRlZmF1bHRzlE6MBGRpY3SUfZSMDmNsb3N1cmVfdmFsdWVzlF2URz/JmZmZmZmaYYwGbW9kdWxllGgZjARuYW1llGgPjANkb2OUTowXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC2Fubm90YXRpb25zlH2UjAhxdWFsbmFtZZSMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjAprd2RlZmF1bHRzlE51dFIu"
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
} |