mt5-rouge-durga-2 / README.md
devagonal's picture
Upload tokenizer
3d98fea verified
metadata
base_model: google/mt5-base
library_name: transformers
license: apache-2.0
metrics:
  - rouge
tags:
  - generated_from_trainer
model-index:
  - name: mt5-rouge-durga-2
    results: []

mt5-rouge-durga-2

This model is a fine-tuned version of google/mt5-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0126
  • Rouge1: 0.6270
  • Rouge2: 0.6003
  • Rougel: 0.6244
  • Rougelsum: 0.6247

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
4.989 1.0 85 2.8197 0.2164 0.0941 0.1882 0.1883
3.116 2.0 170 2.0798 0.3122 0.1588 0.2604 0.2604
2.8357 3.0 255 1.5681 0.3446 0.1935 0.2953 0.2955
1.7776 4.0 340 1.1806 0.3324 0.1952 0.2895 0.2904
1.1881 5.0 425 0.9407 0.3533 0.2228 0.3088 0.3091
1.8511 6.0 510 0.6826 0.3971 0.2700 0.3644 0.3636
1.7178 7.0 595 0.5128 0.4194 0.3120 0.3894 0.3891
1.2772 8.0 680 0.3878 0.4590 0.3619 0.4311 0.4302
1.3577 9.0 765 0.2709 0.4729 0.3881 0.4499 0.4497
0.8291 10.0 850 0.2005 0.5006 0.4276 0.4748 0.4747
0.6825 11.0 935 0.1616 0.5411 0.4732 0.5215 0.5224
0.5006 12.0 1020 0.1182 0.5348 0.4782 0.5200 0.5196
0.5193 13.0 1105 0.1027 0.5446 0.4910 0.5269 0.5286
0.3933 14.0 1190 0.0881 0.5685 0.5200 0.5535 0.5548
0.1584 15.0 1275 0.0708 0.5719 0.5327 0.5629 0.5645
0.3657 16.0 1360 0.0646 0.5763 0.5315 0.5648 0.5659
0.2731 17.0 1445 0.0525 0.5908 0.5500 0.5844 0.5844
0.3466 18.0 1530 0.0511 0.5971 0.5596 0.5873 0.5886
0.1892 19.0 1615 0.0384 0.6044 0.5675 0.5991 0.5995
0.1684 20.0 1700 0.0328 0.6066 0.5744 0.6046 0.6050
0.0691 21.0 1785 0.0295 0.6057 0.5726 0.6020 0.6027
0.0326 22.0 1870 0.0243 0.6167 0.5872 0.6138 0.6146
0.1872 23.0 1955 0.0195 0.6188 0.5899 0.6149 0.6160
0.1372 24.0 2040 0.0183 0.6253 0.5961 0.6227 0.6233
0.0621 25.0 2125 0.0166 0.6239 0.5957 0.6211 0.6225
0.2539 26.0 2210 0.0161 0.6217 0.5926 0.6191 0.6200
0.2532 27.0 2295 0.0166 0.6195 0.5910 0.6166 0.6173
0.1158 28.0 2380 0.0145 0.6223 0.5943 0.6196 0.6202
0.3496 29.0 2465 0.0132 0.6241 0.5957 0.6212 0.6217
0.059 30.0 2550 0.0126 0.6270 0.6003 0.6244 0.6247

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1