File size: 10,431 Bytes
2efa5aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "90683dd2",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
      "  from .autonotebook import tqdm as notebook_tqdm\n"
     ]
    }
   ],
   "source": [
    "import torch\n",
    "\n",
    "from datasets import load_dataset\n",
    "from transformers import pipeline, AutoTokenizer\n",
    "\n",
    "from trl import PPOTrainer, PPOConfig, AutoModelForCausalLMWithValueHead\n",
    "from trl.core import LengthSampler\n",
    "\n",
    "import os\n",
    "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "24fe6f33",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "DatasetDict({\n",
       "    train: Dataset({\n",
       "        features: ['text', 'label'],\n",
       "        num_rows: 25000\n",
       "    })\n",
       "    test: Dataset({\n",
       "        features: ['text', 'label'],\n",
       "        num_rows: 25000\n",
       "    })\n",
       "    unsupervised: Dataset({\n",
       "        features: ['text', 'label'],\n",
       "        num_rows: 50000\n",
       "    })\n",
       "})"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "ds = load_dataset(\"imdb\")\n",
    "ds"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "e68286f0",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'I rented I AM CURIOUS-YELLOW from my video store because of all the controversy that surrounded it when it was first released in 1967. I also heard that at first it was seized by U.S. customs if it ever tried to enter this country, therefore being a fan of films considered \"controversial\" I really had to see this for myself.<br /><br />The plot is centered around a young Swedish drama student named Lena who wants to learn everything she can about life. In particular she wants to focus her attentions to making some sort of documentary on what the average Swede thought about certain political issues such as the Vietnam War and race issues in the United States. In between asking politicians and ordinary denizens of Stockholm about their opinions on politics, she has sex with her drama teacher, classmates, and married men.<br /><br />What kills me about I AM CURIOUS-YELLOW is that 40 years ago, this was considered pornographic. Really, the sex and nudity scenes are few and far between, even then it\\'s not shot like some cheaply made porno. While my countrymen mind find it shocking, in reality sex and nudity are a major staple in Swedish cinema. Even Ingmar Bergman, arguably their answer to good old boy John Ford, had sex scenes in his films.<br /><br />I do commend the filmmakers for the fact that any sex shown in the film is shown for artistic purposes rather than just to shock people and make money to be shown in pornographic theaters in America. I AM CURIOUS-YELLOW is a good film for anyone wanting to study the meat and potatoes (no pun intended) of Swedish cinema. But really, this film doesn\\'t have much of a plot.'"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "ds['train'][0]['text']"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "2a8de66d",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight', 'pre_classifier.bias', 'pre_classifier.weight']\n",
      "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
     ]
    }
   ],
   "source": [
    "from transformers import AutoModelForSequenceClassification, AutoTokenizer\n",
    "\n",
    "model_name = \"distilbert-base-uncased\"\n",
    "model = AutoModelForSequenceClassification.from_pretrained(model_name)\n",
    "tokenizer = AutoTokenizer.from_pretrained(model_name)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 30,
   "id": "33621a7b",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Map: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 25000/25000 [00:24<00:00, 1014.20 examples/s]\n"
     ]
    }
   ],
   "source": [
    "def tokenize(examples):\n",
    "    outputs = tokenizer(examples['text'], truncation=True)\n",
    "    return outputs\n",
    "\n",
    "tokenized_ds = ds.map(tokenize, batched=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "7c25e889",
   "metadata": {},
   "outputs": [],
   "source": [
    "from transformers import TrainingArguments, Trainer, DataCollatorWithPadding\n",
    "\n",
    "import numpy as np\n",
    "\n",
    "def compute_metrics(eval_preds):\n",
    "    metric = load_metric(\"accuracy\")\n",
    "    logits, labels = eval_preds\n",
    "    predictions = np.argmax(logits, axis=-1)\n",
    "    return metric.compute(predictions=predictions, references=labels)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "4423925c",
   "metadata": {},
   "outputs": [],
   "source": [
    "training_args = TrainingArguments(num_train_epochs=1,\n",
    "                                  output_dir=\"distilbert-imdb\",\n",
    "                                  push_to_hub=False,\n",
    "                                  per_device_train_batch_size=16,\n",
    "                                  per_device_eval_batch_size=16,\n",
    "                                  evaluation_strategy=\"epoch\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "f8b93ddf",
   "metadata": {},
   "outputs": [],
   "source": [
    "data_collator = DataCollatorWithPadding(tokenizer)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "3e7756b8",
   "metadata": {},
   "outputs": [
    {
     "ename": "NameError",
     "evalue": "name 'tokenized_ds' is not defined",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mNameError\u001b[0m                                 Traceback (most recent call last)",
      "Input \u001b[0;32mIn [8]\u001b[0m, in \u001b[0;36m<cell line: 1>\u001b[0;34m()\u001b[0m\n\u001b[1;32m      1\u001b[0m trainer \u001b[38;5;241m=\u001b[39m Trainer(model\u001b[38;5;241m=\u001b[39mmodel, tokenizer\u001b[38;5;241m=\u001b[39mtokenizer,\n\u001b[1;32m      2\u001b[0m                   data_collator\u001b[38;5;241m=\u001b[39mdata_collator,\n\u001b[1;32m      3\u001b[0m                   args\u001b[38;5;241m=\u001b[39mtraining_args,\n\u001b[0;32m----> 4\u001b[0m                   train_dataset\u001b[38;5;241m=\u001b[39m\u001b[43mtokenized_ds\u001b[49m[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtrain\u001b[39m\u001b[38;5;124m\"\u001b[39m],\n\u001b[1;32m      5\u001b[0m                   eval_dataset\u001b[38;5;241m=\u001b[39mtokenized_ds[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtest\u001b[39m\u001b[38;5;124m\"\u001b[39m], \n\u001b[1;32m      6\u001b[0m                   compute_metrics\u001b[38;5;241m=\u001b[39mcompute_metrics)\n",
      "\u001b[0;31mNameError\u001b[0m: name 'tokenized_ds' is not defined"
     ]
    }
   ],
   "source": [
    "trainer = Trainer(model=model, tokenizer=tokenizer,\n",
    "                  data_collator=data_collator,\n",
    "                  args=training_args,\n",
    "                  train_dataset=tokenized_ds[\"train\"],\n",
    "                  eval_dataset=tokenized_ds[\"test\"], \n",
    "                  compute_metrics=compute_metrics)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 35,
   "id": "c4829ba0",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "\n",
       "    <div>\n",
       "      \n",
       "      <progress value='3' max='1563' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
       "      [   3/1563 00:17 < 7:33:36, 0.06 it/s, Epoch 0.00/1]\n",
       "    </div>\n",
       "    <table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       " <tr style=\"text-align: left;\">\n",
       "      <th>Epoch</th>\n",
       "      <th>Training Loss</th>\n",
       "      <th>Validation Loss</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "  </tbody>\n",
       "</table><p>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n",
      "KeyboardInterrupt\n",
      "\n"
     ]
    }
   ],
   "source": [
    "trainer.train()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2f919628",
   "metadata": {},
   "outputs": [],
   "source": [
    "trainer.push_to_hub()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "6448feed",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.13"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}