File size: 7,578 Bytes
22c688b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
[2023-12-19 17:47:31,804] [INFO] [real_accelerator.py:158:get_accelerator] Setting ds_accelerator to cuda (auto detect)
/root/miniconda3/envs/textgen/lib/python3.10/site-packages/trl/trainer/ppo_config.py:141: UserWarning: The `optimize_cuda_cache` arguement will be deprecated soon, please use `optimize_device_cache` instead.
  warnings.warn(
12/19/2023 17:47:36 - WARNING - llmtuner.model.parser - `ddp_find_unused_parameters` needs to be set as False for LoRA in DDP training.
/root/miniconda3/envs/textgen/lib/python3.10/site-packages/transformers/training_args.py:1751: FutureWarning: `--push_to_hub_token` is deprecated and will be removed in version 5 of πŸ€— Transformers. Use `--hub_token` instead.
  warnings.warn(
12/19/2023 17:47:36 - INFO - llmtuner.model.parser - Process rank: 0, device: cuda:0, n_gpu: 2
  distributed training: True, compute dtype: torch.bfloat16
12/19/2023 17:47:36 - INFO - llmtuner.model.parser - Training/evaluation parameters Seq2SeqTrainingArguments(
_n_gpu=2,
adafactor=False,
adam_beta1=0.9,
adam_beta2=0.999,
adam_epsilon=1e-08,
auto_find_batch_size=False,
bf16=True,
bf16_full_eval=False,
data_seed=None,
dataloader_drop_last=False,
dataloader_num_workers=0,
dataloader_persistent_workers=False,
dataloader_pin_memory=True,
ddp_backend=None,
ddp_broadcast_buffers=None,
ddp_bucket_cap_mb=None,
ddp_find_unused_parameters=False,
ddp_timeout=1800,
debug=[],
deepspeed=None,
disable_tqdm=False,
dispatch_batches=None,
do_eval=False,
do_predict=True,
do_train=False,
eval_accumulation_steps=None,
eval_delay=0,
eval_steps=None,
evaluation_strategy=no,
fp16=False,
fp16_backend=auto,
fp16_full_eval=False,
fp16_opt_level=O1,
fsdp=[],
fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_grad_ckpt': False},
fsdp_min_num_params=0,
fsdp_transformer_layer_cls_to_wrap=None,
full_determinism=False,
generation_config=None,
generation_max_length=None,
generation_num_beams=None,
gradient_accumulation_steps=1,
gradient_checkpointing=False,
gradient_checkpointing_kwargs=None,
greater_is_better=None,
group_by_length=False,
half_precision_backend=auto,
hub_always_push=False,
hub_model_id=None,
hub_private_repo=False,
hub_strategy=every_save,
hub_token=<HUB_TOKEN>,
ignore_data_skip=False,
include_inputs_for_metrics=False,
include_num_input_tokens_seen=False,
include_tokens_per_second=False,
jit_mode_eval=False,
label_names=None,
label_smoothing_factor=0.0,
learning_rate=5e-05,
length_column_name=length,
load_best_model_at_end=False,
local_rank=0,
log_level=passive,
log_level_replica=warning,
log_on_each_node=True,
logging_dir=./models/sft/phi-2-sft-alpaca_gpt4_en-1/Predict_20/runs/Dec19_17-47-36_autodl-container-f11a41911a-e496153c,
logging_first_step=False,
logging_nan_inf_filter=True,
logging_steps=500,
logging_strategy=steps,
lr_scheduler_kwargs={},
lr_scheduler_type=linear,
max_grad_norm=1.0,
max_steps=-1,
metric_for_best_model=None,
mp_parameters=,
neftune_noise_alpha=None,
no_cuda=False,
num_train_epochs=3.0,
optim=adamw_torch,
optim_args=None,
output_dir=./models/sft/phi-2-sft-alpaca_gpt4_en-1/Predict_20,
overwrite_output_dir=False,
past_index=-1,
per_device_eval_batch_size=1,
per_device_train_batch_size=8,
predict_with_generate=True,
prediction_loss_only=False,
push_to_hub=False,
push_to_hub_model_id=None,
push_to_hub_organization=None,
push_to_hub_token=<PUSH_TO_HUB_TOKEN>,
ray_scope=last,
remove_unused_columns=True,
report_to=['tensorboard', 'wandb'],
resume_from_checkpoint=None,
run_name=./models/sft/phi-2-sft-alpaca_gpt4_en-1/Predict_20,
save_on_each_node=False,
save_only_model=False,
save_safetensors=True,
save_steps=500,
save_strategy=steps,
save_total_limit=None,
seed=42,
skip_memory_metrics=True,
sortish_sampler=False,
split_batches=False,
tf32=None,
torch_compile=False,
torch_compile_backend=None,
torch_compile_mode=None,
torchdynamo=None,
tpu_metrics_debug=False,
tpu_num_cores=None,
use_cpu=False,
use_ipex=False,
use_legacy_prediction_loop=False,
use_mps_device=False,
warmup_ratio=0.0,
warmup_steps=0,
weight_decay=0.0,
)
12/19/2023 17:47:36 - INFO - llmtuner.data.loader - Loading dataset alpaca_gpt4_data_en.json...
[WARNING|logging.py:314] 2023-12-19 17:47:37,929 >> Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.

Loading checkpoint shards:   0%|          | 0/2 [00:00<?, ?it/s]
Loading checkpoint shards:  50%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 1/2 [00:00<00:00,  1.75it/s]
Loading checkpoint shards: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2/2 [00:00<00:00,  2.79it/s]
Loading checkpoint shards: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2/2 [00:00<00:00,  2.56it/s]
12/19/2023 17:47:38 - INFO - llmtuner.model.adapter - Fine-tuning method: LoRA
12/19/2023 17:47:39 - INFO - llmtuner.model.adapter - Merged 1 adapter(s).
12/19/2023 17:47:39 - INFO - llmtuner.model.adapter - Loaded adapter(s): ./models/sft/phi-2-sft-alpaca_gpt4_en-1
12/19/2023 17:47:39 - INFO - llmtuner.model.loader - trainable params: 0 || all params: 2779683840 || trainable%: 0.0000
12/19/2023 17:47:39 - INFO - llmtuner.model.loader - This IS expected that the trainable params is 0 if you are using model for inference only.
12/19/2023 17:47:39 - INFO - llmtuner.data.template - Add pad token: <|endoftext|>
[WARNING|logging.py:314] 2023-12-19 17:47:40,715 >> You're using a CodeGenTokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.
/root/miniconda3/envs/textgen/lib/python3.10/site-packages/torch/nn/parallel/_functions.py:68: UserWarning: Was asked to gather along dimension 0, but all input tensors were scalars; will instead unsqueeze and return a vector.
  warnings.warn('Was asked to gather along dimension 0, but all '
input_ids:
[50256, 32, 8537, 1022, 257, 11040, 2836, 290, 281, 11666, 4430, 8796, 13, 383, 8796, 3607, 7613, 11, 6496, 11, 290, 23507, 7429, 284, 262, 2836, 338, 2683, 13, 198, 20490, 25, 13786, 1115, 9040, 329, 10589, 5448, 13, 198, 48902, 25]
inputs:
<|endoftext|>A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
Human: Give three tips for staying healthy.
Assistant:

  0%|          | 0/10 [00:00<?, ?it/s]
 20%|β–ˆβ–ˆ        | 2/10 [00:10<00:43,  5.46s/it]
 30%|β–ˆβ–ˆβ–ˆ       | 3/10 [00:12<00:26,  3.85s/it]
 40%|β–ˆβ–ˆβ–ˆβ–ˆ      | 4/10 [00:20<00:31,  5.22s/it]
 50%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 5/10 [00:23<00:22,  4.47s/it]
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 6/10 [00:26<00:16,  4.15s/it]
 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 7/10 [00:39<00:21,  7.02s/it]
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 8/10 [00:46<00:13,  6.96s/it]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 9/10 [00:51<00:06,  6.40s/it]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 10/10 [01:01<00:00,  7.51s/it]Building prefix dict from the default dictionary ...
Loading model from cache /tmp/jieba.cache
Loading model cost 0.578 seconds.
Prefix dict has been built successfully.

100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 10/10 [01:02<00:00,  6.28s/it]
***** predict metrics *****
  predict_bleu-4             =    49.0534
  predict_rouge-1            =    54.9625
  predict_rouge-2            =    31.0959
  predict_rouge-l            =    39.8761
  predict_runtime            = 0:01:10.55
  predict_samples_per_second =      0.283
  predict_steps_per_second   =      0.142
12/19/2023 17:48:51 - INFO - llmtuner.train.sft.trainer - Saving prediction results to ./models/sft/phi-2-sft-alpaca_gpt4_en-1/Predict_20/generated_predictions.jsonl