File size: 7,209 Bytes
ccad850
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "sData = []  # sinhala data tuple\n",
    "eData = []  # english data tuple\n",
    "\n",
    "lstword = []\n",
    "final = []\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "import pickle\n",
    "import TranslaterLogic\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "def clearlstword():\n",
    "    global lstword\n",
    "    lstword = []\n",
    "\n",
    "\n",
    "def translate(txt,t):\n",
    "    global lstword\n",
    "    lstword.clear()\n",
    "    if len(txt)==0:\n",
    "        return lstword\n",
    "    else:\n",
    "        l=t.printAutoSuggestions(txt, 2)\n",
    "    #if len(txt) >= 5:\n",
    "       # t.printAutoSuggestions(txt, 1)\n",
    "    #else:\n",
    "       # t.printAutoSuggestions(txt, 2)\n",
    "    #print(lstword)\n",
    "        return l\n",
    "\n",
    "\n",
    "class TrieNode():\n",
    "    def __init__(self):\n",
    "        # Initialising one node for trie\n",
    "        self.children = {}\n",
    "        self.last = False\n",
    "\n",
    "\n",
    "class Trie():\n",
    "\n",
    "    def __init__(self):\n",
    "\n",
    "        # Initialising the trie structure.\n",
    "        self.root = TrieNode()\n",
    "\n",
    "    def formTrie(self, keys):\n",
    "\n",
    "        # Forms a trie structure with the given set of strings\n",
    "        # if it does not exists already else it merges the key\n",
    "        # into it by extending the structure as required\n",
    "        for key in keys:\n",
    "            self.insert(key)  # inserting one key to the trie.\n",
    "\n",
    "    def insert(self, key):\n",
    "\n",
    "        # Inserts a key into trie if it does not exist already.\n",
    "        # And if the key is a prefix of the trie node, just\n",
    "        # marks it as leaf node.\n",
    "        node = self.root\n",
    "\n",
    "        for a in key:\n",
    "            if not node.children.get(a):\n",
    "                node.children[a] = TrieNode()\n",
    "\n",
    "            node = node.children[a]\n",
    "\n",
    "        node.last = True\n",
    "\n",
    "    def suggestionsRec(self, node, word):\n",
    "\n",
    "        # Method to recursively traverse the trie\n",
    "        # and return a whole word.\n",
    "        lstword=[]\n",
    "        \n",
    "        if node.last:\n",
    "            sin_indexes = [n for n, x in enumerate(eData) if x == word]\n",
    "            for i in sin_indexes:\n",
    "                y = int(i)\n",
    "                if sData[y] not in lstword:\n",
    "                    # print(sData[y])\n",
    "                    lstword.append(sData[y])\n",
    "        #adding the rule\n",
    "        #txt=str(TranslaterLogic.convertText(word))\n",
    "       # print(txt)\n",
    "        #lstword.append(txt)\n",
    "        return lstword\n",
    "                    \n",
    "    def suggestionsRecsuffix(self, node, word):\n",
    "\n",
    "        # Method to recursively traverse the trie\n",
    "        # and return a whole word.\n",
    "        if node.last:\n",
    "            sin_indexes = [n for n, x in enumerate(eData) if x == word]\n",
    "            for i in sin_indexes:\n",
    "                y = int(i)\n",
    "                if sData[y] not in lstword:\n",
    "                    # print(sData[y])\n",
    "                    lstword.append(sData[y])\n",
    "\n",
    "        for a, n in node.children.items():\n",
    "            self.suggestionsRec(n, word + a)\n",
    "\n",
    "    def printAutoSuggestions(self, key, para):\n",
    "\n",
    "        # adding text using rule\n",
    "        # lstword.append(str(TranslaterLogic.convertText(key)))\n",
    "\n",
    "        # Returns all the words in the trie whose common\n",
    "        # prefix is the given key thus listing out all\n",
    "        # the suggestions for autocomplete.\n",
    "\n",
    "        node = self.root\n",
    "\n",
    "        for a in key:\n",
    "            # no string in the Trie has this prefix\n",
    "            if not node.children.get(a):\n",
    "                return 0\n",
    "            node = node.children[a]\n",
    "\n",
    "        # If prefix is present as a word, but\n",
    "        # there is no subtree below the last\n",
    "        # matching node.\n",
    "        if not node.children:\n",
    "            return -1\n",
    "        if para == 1:\n",
    "            lst=self.suggestionsRecsuffix(node, key)\n",
    "            return lst\n",
    "        else:\n",
    "            lst=self.suggestionsRec(node, key)\n",
    "            return lst"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Code for creating trie\n",
    "\n",
    "textFile = open(\"singlishtrainsuggest.txt\",\n",
    "                mode='r', encoding='utf-8')\n",
    "for i in textFile:\n",
    "    txt = i.split(\"/\")\n",
    "    eData.append(txt[0])\n",
    "    sData.append(txt[1].strip('\\n'))\n",
    "\n",
    "keys = eData\n",
    "# keys to form the trie structure.\n",
    "# creating trie object\n",
    "t = Trie()\n",
    "\n",
    "# creating the trie structure with the\n",
    "# given set of strings.\n",
    "# t.formTrie(keys)\n",
    "# print(\"Trie generated .\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Trie saved.\n"
     ]
    }
   ],
   "source": [
    "# import pickle\n",
    "\n",
    "# # Saving the Trie object\n",
    "# with open('trie.pkl', 'wb') as f:\n",
    "#     pickle.dump(t, f)\n",
    "\n",
    "# print(\"Trie saved.\")\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Trie loaded.\n"
     ]
    }
   ],
   "source": [
    "import pickle\n",
    "# Loading the Trie object\n",
    "with open('trie.pkl', 'rb') as f:\n",
    "    loaded_t = pickle.load(f)\n",
    "\n",
    "print(\"Trie loaded.\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "['ආදරය', 'ආදාරය', 'අදාරය', 'ආධාරය', 'අදරය']\n"
     ]
    }
   ],
   "source": [
    "print(translate(\"adaraya\",loaded_t))"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "llm",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.5"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}