File size: 1,819 Bytes
b0bceb5 c5f29dc 4c7e589 c5f29dc b0bceb5 c5f29dc b0bceb5 c5f29dc b0bceb5 67754f8 c5f29dc 4c7e589 b0bceb5 c5f29dc b0bceb5 c5f29dc b0bceb5 c5f29dc b0bceb5 c5f29dc b0bceb5 c5f29dc b0bceb5 c5f29dc b0bceb5 c5f29dc b0bceb5 c5f29dc b0bceb5 c5f29dc 44c65e4 c5f29dc 999bc6c b0bceb5 c5f29dc b0bceb5 c5f29dc 4c7e589 b0bceb5 c5f29dc b0bceb5 c5f29dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
---
license: mit
base_model: desarrolloasesoreslocales/bert-leg-al-corpus
tags:
- generated_from_trainer
model-index:
- name: bert-leg-al-corpus
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-leg-al-corpus
This model is a fine-tuned version of [desarrolloasesoreslocales/bert-leg-al-corpus](https://huggingface.co/desarrolloasesoreslocales/bert-leg-al-corpus) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1091
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 120 | 2.1589 |
| No log | 2.0 | 240 | 2.1450 |
| No log | 3.0 | 360 | 2.1474 |
| No log | 4.0 | 480 | 2.1235 |
| 2.3496 | 5.0 | 600 | 2.1529 |
| 2.3496 | 6.0 | 720 | 2.1309 |
| 2.3496 | 7.0 | 840 | 2.1170 |
| 2.3496 | 8.0 | 960 | 2.1386 |
| 2.297 | 9.0 | 1080 | 2.1235 |
| 2.297 | 10.0 | 1200 | 2.1109 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|