derek33125 commited on
Commit
dd59a31
1 Parent(s): 2e4c6ad

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +61 -195
README.md CHANGED
@@ -1,200 +1,66 @@
1
  ---
 
 
 
 
 
 
2
  library_name: transformers
 
 
3
  tags:
 
 
 
4
  - llama-factory
 
5
  ---
6
-
7
- # Model Card for Model ID
8
-
9
- <!-- Provide a quick summary of what the model is/does. -->
10
-
11
-
12
-
13
- ## Model Details
14
-
15
- ### Model Description
16
-
17
- <!-- Provide a longer summary of what this model is. -->
18
-
19
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
20
-
21
- - **Developed by:** [More Information Needed]
22
- - **Funded by [optional]:** [More Information Needed]
23
- - **Shared by [optional]:** [More Information Needed]
24
- - **Model type:** [More Information Needed]
25
- - **Language(s) (NLP):** [More Information Needed]
26
- - **License:** [More Information Needed]
27
- - **Finetuned from model [optional]:** [More Information Needed]
28
-
29
- ### Model Sources [optional]
30
-
31
- <!-- Provide the basic links for the model. -->
32
-
33
- - **Repository:** [More Information Needed]
34
- - **Paper [optional]:** [More Information Needed]
35
- - **Demo [optional]:** [More Information Needed]
36
-
37
- ## Uses
38
-
39
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
40
-
41
- ### Direct Use
42
-
43
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
44
-
45
- [More Information Needed]
46
-
47
- ### Downstream Use [optional]
48
-
49
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
50
-
51
- [More Information Needed]
52
-
53
- ### Out-of-Scope Use
54
-
55
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
56
-
57
- [More Information Needed]
58
-
59
- ## Bias, Risks, and Limitations
60
-
61
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
62
-
63
- [More Information Needed]
64
-
65
- ### Recommendations
66
-
67
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
68
-
69
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
70
-
71
- ## How to Get Started with the Model
72
-
73
- Use the code below to get started with the model.
74
-
75
- [More Information Needed]
76
-
77
- ## Training Details
78
-
79
- ### Training Data
80
-
81
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
82
-
83
- [More Information Needed]
84
-
85
- ### Training Procedure
86
-
87
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
88
-
89
- #### Preprocessing [optional]
90
-
91
- [More Information Needed]
92
-
93
-
94
- #### Training Hyperparameters
95
-
96
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
97
-
98
- #### Speeds, Sizes, Times [optional]
99
-
100
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
101
-
102
- [More Information Needed]
103
-
104
- ## Evaluation
105
-
106
- <!-- This section describes the evaluation protocols and provides the results. -->
107
-
108
- ### Testing Data, Factors & Metrics
109
-
110
- #### Testing Data
111
-
112
- <!-- This should link to a Dataset Card if possible. -->
113
-
114
- [More Information Needed]
115
-
116
- #### Factors
117
-
118
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
119
-
120
- [More Information Needed]
121
-
122
- #### Metrics
123
-
124
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
125
-
126
- [More Information Needed]
127
-
128
- ### Results
129
-
130
- [More Information Needed]
131
-
132
- #### Summary
133
-
134
-
135
-
136
- ## Model Examination [optional]
137
-
138
- <!-- Relevant interpretability work for the model goes here -->
139
-
140
- [More Information Needed]
141
-
142
- ## Environmental Impact
143
-
144
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
145
-
146
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
147
-
148
- - **Hardware Type:** [More Information Needed]
149
- - **Hours used:** [More Information Needed]
150
- - **Cloud Provider:** [More Information Needed]
151
- - **Compute Region:** [More Information Needed]
152
- - **Carbon Emitted:** [More Information Needed]
153
-
154
- ## Technical Specifications [optional]
155
-
156
- ### Model Architecture and Objective
157
-
158
- [More Information Needed]
159
-
160
- ### Compute Infrastructure
161
-
162
- [More Information Needed]
163
-
164
- #### Hardware
165
-
166
- [More Information Needed]
167
-
168
- #### Software
169
-
170
- [More Information Needed]
171
-
172
- ## Citation [optional]
173
-
174
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
175
-
176
- **BibTeX:**
177
-
178
- [More Information Needed]
179
-
180
- **APA:**
181
-
182
- [More Information Needed]
183
-
184
- ## Glossary [optional]
185
-
186
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
187
-
188
- [More Information Needed]
189
-
190
- ## More Information [optional]
191
-
192
- [More Information Needed]
193
-
194
- ## Model Card Authors [optional]
195
-
196
- [More Information Needed]
197
-
198
- ## Model Card Contact
199
-
200
- [More Information Needed]
 
1
  ---
2
+ license: other
3
+ license_name: glm-4
4
+ license_link: https://huggingface.co/THUDM/glm-4-9b-chat/blob/main/LICENSE
5
+ language:
6
+ - en
7
+ - zh
8
  library_name: transformers
9
+ pipeline_tag: text-generation
10
+ base_model: THUDM/glm-4-9b-chat
11
  tags:
12
+ - Mental Health
13
+ - Chatbot
14
+ - LLM
15
  - llama-factory
16
+ - EMOLLM
17
  ---
18
+ # Update
19
+ **The model is now following the update from GLM-4-9B-Chat and now requires `transformers>=4.44.0`. Please update your dependencies accordingly.**
20
+ **Also follow the [dependencies](https://github.com/THUDM/GLM-4/blob/main/basic_demo/requirements.txt) it before using**
21
+
22
+ # Introduction
23
+ This model is [GLM-4-9B-Chat](https://huggingface.co/THUDM/glm-4-9b-chat/tree/main), fine-tuned with various datasets to focus on mental health care.
24
+
25
+ Since it is fine-tuned with a Chinese dataset, please use it in Chinese, even though the base model supports English text.
26
+
27
+ # Dataset
28
+ - [Smile dataset](https://github.com/qiuhuachuan/smile)
29
+ - [SoulChat](https://github.com/scutcyr/SoulChat)
30
+ - [single_turn_dataset_1 from EMOLLM](https://github.com/SmartFlowAI/EmoLLM/blob/main/datasets/single_turn_dataset_1.json)
31
+ - [self-defined role-playing dataset]
32
+
33
+ # Training
34
+ Using LLaMA-Factory to do the fine-tuning process. Here are the parameters:
35
+ (TODO)
36
+
37
+
38
+ # Use the following method to quickly call the GLM-4-9B-Chat language model
39
+ Use the transformers backend for inference:
40
+ ```python
41
+ import torch
42
+ from transformers import AutoModelForCausalLM, AutoTokenizer
43
+ device = "cuda"
44
+ tokenizer = AutoTokenizer.from_pretrained("derek33125/project-angel-chatglm4", trust_remote_code=True)
45
+ query = "我感到很悲伤"
46
+ inputs = tokenizer.apply_chat_template([{"role": "user", "content": query}],
47
+ add_generation_prompt=True,
48
+ tokenize=True,
49
+ return_tensors="pt",
50
+ return_dict=True
51
+ )
52
+ inputs = inputs.to(device)
53
+ model = AutoModelForCausalLM.from_pretrained(
54
+ "derek33125/project-angel-chatglm4",
55
+ torch_dtype=torch.bfloat16,
56
+ low_cpu_mem_usage=True,
57
+ trust_remote_code=True
58
+ ).to(device).eval()
59
+ gen_kwargs = {"max_length": 2500, "do_sample": True, "top_k": 1}
60
+ with torch.no_grad():
61
+ outputs = model.generate(**inputs, **gen_kwargs)
62
+ outputs = outputs[:, inputs['input_ids'].shape[1]:]
63
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
64
+ ```
65
+
66
+ It also supports [VLLM](https://github.com/THUDM/GLM-4/blob/main/basic_demo/openai_api_server.py) and [LangChain](https://python.langchain.com/v0.2/docs/integrations/llms/huggingface_pipelines/) .