derek33125 commited on
Commit
2e4c6ad
1 Parent(s): 3d780b5

Upload tokenizer

Browse files
added_tokens.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<eop>": 151334,
3
+ "<sop>": 151333,
4
+ "<|assistant|>": 151337,
5
+ "<|begin_of_image|>": 151339,
6
+ "<|begin_of_video|>": 151341,
7
+ "<|end_of_image|>": 151340,
8
+ "<|end_of_video|>": 151342,
9
+ "<|endoftext|>": 151329,
10
+ "<|observation|>": 151338,
11
+ "<|system|>": 151335,
12
+ "<|user|>": 151336,
13
+ "[MASK]": 151330,
14
+ "[gMASK]": 151331,
15
+ "[sMASK]": 151332
16
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|endoftext|>",
4
+ "[MASK]",
5
+ "[gMASK]",
6
+ "[sMASK]",
7
+ "<sop>",
8
+ "<eop>",
9
+ "<|system|>",
10
+ "<|user|>",
11
+ "<|assistant|>",
12
+ "<|observation|>",
13
+ "<|begin_of_image|>",
14
+ "<|end_of_image|>",
15
+ "<|begin_of_video|>",
16
+ "<|end_of_video|>"
17
+ ],
18
+ "eos_token": {
19
+ "content": "<|endoftext|>",
20
+ "lstrip": false,
21
+ "normalized": false,
22
+ "rstrip": false,
23
+ "single_word": false
24
+ },
25
+ "pad_token": {
26
+ "content": "<|endoftext|>",
27
+ "lstrip": false,
28
+ "normalized": false,
29
+ "rstrip": false,
30
+ "single_word": false
31
+ }
32
+ }
tokenization_chatglm.py ADDED
@@ -0,0 +1,322 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import regex as re
2
+ import base64
3
+ import os
4
+ import json
5
+ import tiktoken
6
+ from typing import List, Optional, Union, Dict, Any
7
+ from transformers import PreTrainedTokenizer
8
+ from transformers.utils import logging, PaddingStrategy, TensorType
9
+ from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
10
+
11
+
12
+ class ChatGLM4Tokenizer(PreTrainedTokenizer):
13
+ vocab_files_names = {"vocab_file": "tokenizer.model"}
14
+ model_input_names = ["input_ids", "attention_mask", "position_ids"]
15
+
16
+ def __init__(
17
+ self,
18
+ vocab_file,
19
+ padding_side="left",
20
+ clean_up_tokenization_spaces=False,
21
+ encode_special_tokens=False,
22
+ **kwargs
23
+ ):
24
+ self.name = "GLM4Tokenizer"
25
+ self.vocab_file = vocab_file
26
+ pat_str = "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
27
+ self.pat_str = re.compile(pat_str)
28
+ self.encode_special_tokens = encode_special_tokens
29
+
30
+ mergeable_ranks = {}
31
+ with open(vocab_file) as f:
32
+ for line in f:
33
+ token, rank = line.strip().split()
34
+ rank = int(rank)
35
+ token = base64.b64decode(token)
36
+ mergeable_ranks[token] = rank
37
+
38
+ self.mergeable_ranks = mergeable_ranks
39
+
40
+ self.tokenizer = tiktoken.Encoding(
41
+ name="my_tokenizer",
42
+ pat_str=pat_str,
43
+ mergeable_ranks=mergeable_ranks,
44
+ special_tokens={}
45
+ )
46
+ self.decoder = {rank: token for token, rank in mergeable_ranks.items()}
47
+ self.n_words = len(self.decoder)
48
+
49
+ super().__init__(
50
+ padding_side=padding_side,
51
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
52
+ **kwargs
53
+ )
54
+
55
+ @property
56
+ def vocab_size(self):
57
+ return self.n_words
58
+
59
+ def get_vocab(self):
60
+ """ Returns vocab as a dict """
61
+ vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
62
+ vocab.update(self.added_tokens_encoder)
63
+ return vocab
64
+
65
+ def convert_tokens_to_string(self, tokens: List[Union[bytes, str, int]]) -> str:
66
+ """
67
+ Converts a sequence of tokens in a single string.
68
+ """
69
+ text = ""
70
+ temp = b""
71
+ for t in tokens:
72
+ if isinstance(t, int):
73
+ t = chr(t)
74
+ if isinstance(t, str):
75
+ if temp:
76
+ text += temp.decode("utf-8", errors="replace")
77
+ elif isinstance(t, bytes):
78
+ temp += t
79
+ else:
80
+ raise TypeError("token should only be of type int, bytes or str")
81
+ if temp:
82
+ text += temp.decode("utf-8", errors="replace")
83
+ return text
84
+
85
+ def _tokenize(self, text, **kwargs):
86
+ tokens = []
87
+ ids = self.tokenizer.encode(text)
88
+ for t in ids:
89
+ tokens.append(self.decoder[t])
90
+ return tokens
91
+
92
+ def _convert_token_to_id(self, token):
93
+ """ Converts a token (str) in an id using the vocab. """
94
+ return self.mergeable_ranks[token]
95
+
96
+ def _convert_id_to_token(self, index):
97
+ """Converts an index (integer) in a token (str) using the vocab."""
98
+ return self.decoder.get(index, "")
99
+
100
+ def save_vocabulary(self, save_directory, filename_prefix=None):
101
+ """
102
+ Save the vocabulary and special tokens file to a directory.
103
+
104
+ Args:
105
+ save_directory (`str`):
106
+ The directory in which to save the vocabulary.
107
+ filename_prefix (`str`, *optional*):
108
+ An optional prefix to add to the named of the saved files.
109
+
110
+ Returns:
111
+ `Tuple(str)`: Paths to the files saved.
112
+ """
113
+ if os.path.isdir(save_directory):
114
+ vocab_file = os.path.join(
115
+ save_directory, self.vocab_files_names["vocab_file"]
116
+ )
117
+ else:
118
+ vocab_file = save_directory
119
+
120
+ with open(self.vocab_file, 'rb') as fin:
121
+ proto_str = fin.read()
122
+
123
+ with open(vocab_file, "wb") as writer:
124
+ writer.write(proto_str)
125
+
126
+ return (vocab_file,)
127
+
128
+ def get_prefix_tokens(self):
129
+ prefix_tokens = [self.convert_tokens_to_ids("[gMASK]"), self.convert_tokens_to_ids("<sop>")]
130
+ return prefix_tokens
131
+
132
+ def build_single_message(self, role, metadata, message, tokenize=True):
133
+ assert role in ["system", "user", "assistant", "observation"], role
134
+ if tokenize:
135
+ role_tokens = [self.convert_tokens_to_ids(f"<|{role}|>")] + self.tokenizer.encode(f"{metadata}\n",
136
+ disallowed_special=())
137
+ message_tokens = self.tokenizer.encode(message, disallowed_special=())
138
+ tokens = role_tokens + message_tokens
139
+ return tokens
140
+ else:
141
+ return str(f"<|{role}|>{metadata}\n{message}")
142
+
143
+ # Use Jinja Template in tokenizer_config.json
144
+ # def apply_chat_template(
145
+ # self,
146
+ # conversation: Union[List[Dict[str, str]], List[List[Dict[str, str]]], "Conversation"],
147
+ # add_generation_prompt: bool = False,
148
+ # tokenize: bool = True,
149
+ # padding: bool = False,
150
+ # truncation: bool = False,
151
+ # max_length: Optional[int] = None,
152
+ # return_tensors: Optional[Union[str, TensorType]] = None,
153
+ # return_dict: bool = False,
154
+ # tokenizer_kwargs: Optional[Dict[str, Any]] = None,
155
+ # add_special_tokens: bool = True,
156
+ # **kwargs,
157
+ # ) -> Union[str, List[int], List[str], List[List[int]], BatchEncoding]:
158
+ #
159
+ # if return_dict and not tokenize:
160
+ # raise ValueError(
161
+ # "`return_dict=True` is incompatible with `tokenize=False`, because there is no dict "
162
+ # "of tokenizer outputs to return."
163
+ # )
164
+ #
165
+ # def handle_single_conversation(conversation):
166
+ # input_ids = self.get_prefix_tokens() if add_special_tokens else []
167
+ # input_message = "[gMASK]<sop>" if add_special_tokens else ""
168
+ # for item in conversation:
169
+ # if item.get("tools"):
170
+ # tools = item["tools"]
171
+ # content = "你是一个名为 GhatGLM 的人工智能助手。你是基于智谱AI训练的语言模型 GLM-4 模型开发的,你的任务是针对用户的问题和要求提供适当的答复和支持。"
172
+ # content += "\n\n# 可用工具"
173
+ # for tool in tools:
174
+ # if tool["type"] == "function":
175
+ # function = tool["function"]
176
+ # content += f"\n\n## {function['name']}\n\n{json.dumps(function, ensure_ascii=False, indent=4)}"
177
+ # content += "\n在调用上述函数时,请使用 Json 格式表示调用的参数。"
178
+ # elif tool["type"] == "python":
179
+ # content += "\n\n## python\n\n当你向 `python` 发送包含 Python 代码的消息时,该代码将会在一个有状态的 Jupyter notebook 环境中执行。\n`python` 返回代码执行的输出,或在执行 60 秒后返回超时。\n`/mnt/data` 将会持久化存储你的文件。在此会话中,`python` 无法访问互联网。不要使用 `python` 进行任何网络请求或者在线 API 调用,这些在线内容的访问将不会成功。"
180
+ # elif tool["type"] == "simple_browser":
181
+ # content += "\n\n## simple_browser\n\n你可以使用 `simple_browser` 工具。该工具支持以下函数:\n`search(query: str, recency_days: int)`:使用搜索引擎进行查询并显示结果,可以使用 `recency_days` 参数控制搜索内容的时效性。\n`mclick(ids: list[int])`:获取一系列指定 id 的页面内容。每次调用时,须选择3-10个页面。选择多个角度的页面,同时尽可能选择可信任的信息来源。考虑到部分页面是无法加载的,你也可以多打开一些可能有用的页面而不用担心内容过多。\n`open_url(url: str)`:打开指定的 URL。\n\n使用 `【{引用 id}†{引用文本}】` 来引用内容。\n\n操作步骤:1. 使用 `search` 来获得信息列表; 2. 使用 `mclick` 来获取指定 ID 页面的内容; 3. 根据获得的内容进行回复。在回复中应当引用信息来源。\n 如果用户提供了 URL,也可以用 `open_url` 直接打开页面。\n如果初次搜索结果没有找到合适的信息,也可以再次使用 `search` 进行搜索。"
182
+ # elif tool["type"] == "cogview":
183
+ # content += "\n\n## cogview\n\n如果用户的请求中包含了对图像的描述,你可以使用 `cogview` 来生成图像并展示给用户。你需要向 `cogview` 发送图像描述,规则:\n- 发送给 `cogview` 的消息必须使用英语。用户的中文描述必须完全翻译为英语。\n- 应当尽可能详细地描述图像生成的需求,需求描述约 100 英文单词。\n- 保持用户原始描述的意图。不要虚构内容或者没见过的人物。\n- 如无特殊说明,所在地为中国,持有中国立场并遵循中国社会主义价值观。"
184
+ # else:
185
+ # raise NotImplementedError(f"Unknown tool type {tool['type']}")
186
+ # input = self.build_single_message("system", "", content, tokenize=tokenize)
187
+ # if tokenize:
188
+ # input_ids.extend(input)
189
+ # else:
190
+ # input_message += input
191
+ # if item["content"]:
192
+ # input = self.build_single_message(
193
+ # item["role"],
194
+ # item.get("metadata", ""),
195
+ # item["content"],
196
+ # tokenize=tokenize
197
+ # )
198
+ # if tokenize:
199
+ # input_ids.extend(input)
200
+ # else:
201
+ # input_message += input
202
+ # if add_generation_prompt:
203
+ # if tokenize:
204
+ # input_ids.extend([self.convert_tokens_to_ids("<|assistant|>")])
205
+ # else:
206
+ # input_message += "<|assistant|>"
207
+ # return input_ids if tokenize else input_message
208
+ #
209
+ # # Main logic to handle different conversation formats
210
+ # if isinstance(conversation, list) and all(isinstance(i, dict) for i in conversation):
211
+ # result = handle_single_conversation(conversation)
212
+ # elif isinstance(conversation, list) and all(isinstance(i, list) for i in conversation):
213
+ # result = [handle_single_conversation(c) for c in conversation]
214
+ # elif hasattr(conversation, "messages"):
215
+ # result = handle_single_conversation(conversation.messages)
216
+ # else:
217
+ # raise ValueError("Invalid conversation format")
218
+ #
219
+ # if tokenize:
220
+ # output = self.batch_encode_plus(
221
+ # [result] if isinstance(result[0], int) else result,
222
+ # padding=padding,
223
+ # truncation=truncation,
224
+ # max_length=max_length,
225
+ # return_tensors=return_tensors,
226
+ # is_split_into_words=True,
227
+ # add_special_tokens=False
228
+ # )
229
+ # if return_dict:
230
+ # return output
231
+ # else:
232
+ # return output["input_ids"]
233
+ # else:
234
+ # return result
235
+
236
+ def build_inputs_with_special_tokens(
237
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
238
+ ) -> List[int]:
239
+ """
240
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
241
+ adding special tokens. A BERT sequence has the following format:
242
+
243
+ - single sequence: `[CLS] X [SEP]`
244
+ - pair of sequences: `[CLS] A [SEP] B [SEP]`
245
+
246
+ Args:
247
+ token_ids_0 (`List[int]`):
248
+ List of IDs to which the special tokens will be added.
249
+ token_ids_1 (`List[int]`, *optional*):
250
+ Optional second list of IDs for sequence pairs.
251
+
252
+ Returns:
253
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
254
+ """
255
+ prefix_tokens = self.get_prefix_tokens()
256
+ token_ids_0 = prefix_tokens + token_ids_0
257
+ if token_ids_1 is not None:
258
+ token_ids_0 = token_ids_0 + token_ids_1 + [self.convert_tokens_to_ids("<eos>")]
259
+ return token_ids_0
260
+
261
+ def _pad(
262
+ self,
263
+ encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
264
+ max_length: Optional[int] = None,
265
+ padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
266
+ pad_to_multiple_of: Optional[int] = None,
267
+ return_attention_mask: Optional[bool] = None,
268
+ ) -> dict:
269
+ """
270
+ Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
271
+
272
+ Args:
273
+ encoded_inputs:
274
+ Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
275
+ max_length: maximum length of the returned list and optionally padding length (see below).
276
+ Will truncate by taking into account the special tokens.
277
+ padding_strategy: PaddingStrategy to use for padding.
278
+
279
+ - PaddingStrategy.LONGEST Pad to the longest sequence in the batch
280
+ - PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
281
+ - PaddingStrategy.DO_NOT_PAD: Do not pad
282
+ The tokenizer padding sides are defined in self.padding_side:
283
+
284
+ - 'left': pads on the left of the sequences
285
+ - 'right': pads on the right of the sequences
286
+ pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
287
+ This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
288
+ `>= 7.5` (Volta).
289
+ return_attention_mask:
290
+ (optional) Set to False to avoid returning attention mask (default: set to model specifics)
291
+ """
292
+ # Load from model defaults
293
+ assert self.padding_side == "left"
294
+
295
+ required_input = encoded_inputs[self.model_input_names[0]]
296
+ seq_length = len(required_input)
297
+
298
+ if padding_strategy == PaddingStrategy.LONGEST:
299
+ max_length = len(required_input)
300
+
301
+ if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
302
+ max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
303
+
304
+ needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
305
+
306
+ # Initialize attention mask if not present.
307
+ if "attention_mask" not in encoded_inputs:
308
+ encoded_inputs["attention_mask"] = [1] * seq_length
309
+
310
+ if "position_ids" not in encoded_inputs:
311
+ encoded_inputs["position_ids"] = list(range(seq_length))
312
+
313
+ if needs_to_be_padded:
314
+ difference = max_length - len(required_input)
315
+
316
+ if "attention_mask" in encoded_inputs:
317
+ encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
318
+ if "position_ids" in encoded_inputs:
319
+ encoded_inputs["position_ids"] = [0] * difference + encoded_inputs["position_ids"]
320
+ encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
321
+
322
+ return encoded_inputs
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a493598071550244b2ee7f26118f3edec2150b9dfa967929a99052ac83fe716
3
+ size 2623634
tokenizer_config.json ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "151329": {
4
+ "content": "<|endoftext|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "151330": {
12
+ "content": "[MASK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "151331": {
20
+ "content": "[gMASK]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "151332": {
28
+ "content": "[sMASK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "151333": {
36
+ "content": "<sop>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "151334": {
44
+ "content": "<eop>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "151335": {
52
+ "content": "<|system|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "151336": {
60
+ "content": "<|user|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "151337": {
68
+ "content": "<|assistant|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "151338": {
76
+ "content": "<|observation|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "151339": {
84
+ "content": "<|begin_of_image|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "151340": {
92
+ "content": "<|end_of_image|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "151341": {
100
+ "content": "<|begin_of_video|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "151342": {
108
+ "content": "<|end_of_video|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ }
115
+ },
116
+ "additional_special_tokens": [
117
+ "<|endoftext|>",
118
+ "[MASK]",
119
+ "[gMASK]",
120
+ "[sMASK]",
121
+ "<sop>",
122
+ "<eop>",
123
+ "<|system|>",
124
+ "<|user|>",
125
+ "<|assistant|>",
126
+ "<|observation|>",
127
+ "<|begin_of_image|>",
128
+ "<|end_of_image|>",
129
+ "<|begin_of_video|>",
130
+ "<|end_of_video|>"
131
+ ],
132
+ "auto_map": {
133
+ "AutoTokenizer": [
134
+ "tokenization_chatglm.ChatGLM4Tokenizer",
135
+ null
136
+ ]
137
+ },
138
+ "chat_template": "{{ '[gMASK]<sop>' }}{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% endif %}{% if system_message is defined %}{{ '<|system|>\n' + system_message }}{% endif %}{% for message in loop_messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|user|>\n' + content + '<|assistant|>' }}{% elif message['role'] == 'assistant' %}{{ '\n' + content }}{% endif %}{% endfor %}",
139
+ "clean_up_tokenization_spaces": false,
140
+ "do_lower_case": false,
141
+ "eos_token": "<|endoftext|>",
142
+ "model_max_length": 128000,
143
+ "pad_token": "<|endoftext|>",
144
+ "padding_side": "left",
145
+ "remove_space": false,
146
+ "split_special_tokens": false,
147
+ "tokenizer_class": "ChatGLM4Tokenizer"
148
+ }