derek-thomas's picture
derek-thomas HF staff
update model card README.md
5f57ccb
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - marsyas/gtzan
metrics:
  - accuracy
model-index:
  - name: hubert-base-ls960-finetuned-gtzan-efficient-label-smoothed
    results: []

hubert-base-ls960-finetuned-gtzan-efficient-label-smoothed

This model is a fine-tuned version of facebook/hubert-base-ls960 on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2778
  • Accuracy: 0.84

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30
  • label_smoothing_factor: 0.9

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.2946 1.0 113 2.2960 0.42
2.2821 2.0 226 2.2858 0.63
2.2842 3.0 339 2.2848 0.68
2.2685 4.0 452 2.2836 0.71
2.2688 5.0 565 2.2838 0.71
2.2901 6.0 678 2.2804 0.75
2.2683 7.0 791 2.2831 0.7
2.2695 8.0 904 2.2833 0.75
2.268 9.0 1017 2.2793 0.8
2.2836 10.0 1130 2.2867 0.68
2.2704 11.0 1243 2.2811 0.78
2.2665 12.0 1356 2.2783 0.83
2.2663 13.0 1469 2.2782 0.85
2.2669 14.0 1582 2.2759 0.88
2.266 15.0 1695 2.2800 0.82
2.266 16.0 1808 2.2797 0.82
2.266 17.0 1921 2.2778 0.84

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.1.0.dev20230627+cu121
  • Datasets 2.13.1
  • Tokenizers 0.13.3