File size: 7,255 Bytes
464767c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
#!/usr/bin/env python3
import os
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from transformers import (
    AutoTokenizer,
    AutoModelForCausalLM,
    get_linear_schedule_with_warmup
)
from peft import LoraConfig, get_peft_model, TaskType
from datasets import load_dataset
from tqdm.auto import tqdm
from multiprocessing import freeze_support

def main():
    # Config
    MODEL_NAME     = "google/gemma-3-1b-pt"
    DATA_FILE      = "text.txt"       # one sequence per line
    BATCH_SIZE     = 12
    MAX_LENGTH     = 128
    LR             = 1e-5
    WEIGHT_DECAY   = 0.01
    NUM_EPOCHS     = 1
    VAL_RATIO      = 0.1              # 10% for validation
    LORA_R         = 8
    LORA_ALPHA     = 16
    LORA_DROPOUT   = 0.0
    PROJ_HIDDEN    = 512
    PROJ_OUT       = 256
    TEMP           = 0.05
    OUTPUT_DIR     = "stage1_simcse"
    GRAD_CLIP_NORM = 1.0
    SIM_CLAMP_MIN  = -10.0
    SIM_CLAMP_MAX  = 10.0
    SEED           = 42

    os.makedirs(OUTPUT_DIR, exist_ok=True)
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    # tokenizer + model
    tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_fast=True)
    base_model = AutoModelForCausalLM.from_pretrained(
        MODEL_NAME,
        attn_implementation="eager"
    )

    # LoRA on q_proj & v_proj
    lora_cfg = LoraConfig(
        task_type=TaskType.CAUSAL_LM,
        inference_mode=False,
        r=LORA_R,
        lora_alpha=LORA_ALPHA,
        lora_dropout=LORA_DROPOUT,
        target_modules=["q_proj", "v_proj"],
    )
    model_lora = get_peft_model(base_model, lora_cfg)

    # Encoder + projection head
    class GemmaSimCSE(nn.Module):
        def __init__(self, base):
            super().__init__()
            self.base = base
            hs = base.config.hidden_size
            self.proj = nn.Sequential(
                nn.Linear(hs, PROJ_HIDDEN),
                nn.ReLU(),
                nn.Linear(PROJ_HIDDEN, PROJ_OUT),
            )

        def forward(self, input_ids, attention_mask):
            out = self.base(
                input_ids=input_ids,
                attention_mask=attention_mask,
                output_hidden_states=True,
                return_dict=True
            )
            hidden = out.hidden_states[-1]        # (B, T, H)
            emb    = hidden.mean(dim=1)           # mean-pooling
            emb    = torch.nan_to_num(emb, nan=0.0, posinf=1e-6, neginf=-1e-6)
            z      = self.proj(emb)
            z      = torch.nan_to_num(z, nan=0.0, posinf=1e-6, neginf=-1e-6)
            norm   = z.norm(p=2, dim=1, keepdim=True).clamp_min(1e-6)
            return z / norm

    model = GemmaSimCSE(model_lora).to(device)
    torch.autograd.set_detect_anomaly(True)

    # Load and split dataset
    raw = load_dataset("text", data_files={"train": DATA_FILE}, split="train")
    raw = raw.filter(lambda x: x["text"].strip() != "")
    split = raw.train_test_split(test_size=VAL_RATIO, seed=SEED)
    train_ds = split["train"]
    val_ds   = split["test"]

    # Tokenization
    def tokenize_fn(batch):
        toks = tokenizer(
            batch["text"],
            max_length=MAX_LENGTH,
            truncation=True,
            padding="max_length"
        )
        return {"input_ids": toks["input_ids"], "attention_mask": toks["attention_mask"]}

    train_ds = train_ds.map(
        tokenize_fn,
        batched=True,
        batch_size=1000,
        num_proc=4,
        remove_columns=["text"]
    )
    val_ds = val_ds.map(
        tokenize_fn,
        batched=True,
        batch_size=1000,
        num_proc=4,
        remove_columns=["text"]
    )

    train_ds.set_format(type="torch", columns=["input_ids", "attention_mask"])
    val_ds.set_format(type="torch", columns=["input_ids", "attention_mask"])

    train_loader = DataLoader(train_ds, batch_size=BATCH_SIZE, shuffle=True)
    val_loader   = DataLoader(val_ds,   batch_size=BATCH_SIZE, shuffle=False)

    # Optimizer & scheduler
    optimizer = torch.optim.AdamW(
        model.parameters(), lr=LR, weight_decay=WEIGHT_DECAY
    )
    total_steps = len(train_loader) * NUM_EPOCHS
    scheduler = get_linear_schedule_with_warmup(
        optimizer,
        num_warmup_steps=int(0.1 * total_steps),
        num_training_steps=total_steps
    )

    # Training + validation loop
    for epoch in range(1, NUM_EPOCHS + 1):
        # --- train ---
        model.train()
        train_loss = 0.0
        for batch in tqdm(train_loader, desc=f"Train Epoch {epoch}", unit="batch"):
            ids  = batch["input_ids"].to(device)
            mask = batch["attention_mask"].to(device)

            emb1 = model(ids, mask)
            emb2 = model(ids, mask)
            emb  = torch.cat([emb1, emb2], dim=0)
            sim  = (emb @ emb.T) / TEMP
            sim  = sim.clamp(SIM_CLAMP_MIN, SIM_CLAMP_MAX)

            # fill diagonal with large negative so self-sim won't be selected
            sim.fill_diagonal_(-1e9)

            B = emb1.size(0)
            # labels: [B..2B-1, 0..B-1]
            labels = torch.cat([
                torch.arange(B, device=device) + B,
                torch.arange(B, device=device)
            ], dim=0)

            loss = F.cross_entropy(sim, labels)
            optimizer.zero_grad()
            loss.backward()
            torch.nn.utils.clip_grad_norm_(model.parameters(), GRAD_CLIP_NORM)
            optimizer.step()
            scheduler.step()

            train_loss += loss.item()

        avg_train_loss = train_loss / len(train_loader)
        print(f"Epoch {epoch} training complete. avg train loss: {avg_train_loss:.6f}")

        # --- validate ---
        model.eval()
        val_loss = 0.0
        with torch.no_grad():
            for batch in tqdm(val_loader, desc=f"Validate Epoch {epoch}", unit="batch"):
                ids  = batch["input_ids"].to(device)
                mask = batch["attention_mask"].to(device)

                emb1 = model(ids, mask)
                emb2 = model(ids, mask)
                emb  = torch.cat([emb1, emb2], dim=0)
                sim  = (emb @ emb.T) / TEMP
                sim  = sim.clamp(SIM_CLAMP_MIN, SIM_CLAMP_MAX)
                sim.fill_diagonal_(-1e9)

                B = emb1.size(0)
                labels = torch.cat([
                    torch.arange(B, device=device) + B,
                    torch.arange(B, device=device)
                ], dim=0)

                loss = F.cross_entropy(sim, labels)
                val_loss += loss.item()

        avg_val_loss = val_loss / len(val_loader)
        print(f"Epoch {epoch} validation complete. avg val loss: {avg_val_loss:.6f}")

        # save checkpoint
        ckpt_dir = os.path.join(OUTPUT_DIR, f"epoch{epoch}")
        model_lora.save_pretrained(ckpt_dir)
        tokenizer.save_pretrained(ckpt_dir)

    # save final model
    final_dir = os.path.join(OUTPUT_DIR, "final")
    os.makedirs(final_dir, exist_ok=True)
    model_lora.save_pretrained(final_dir)
    tokenizer.save_pretrained(final_dir)
    print("Training and validation complete. Final model saved to", final_dir)

if __name__ == "__main__":
    freeze_support()
    main()