File size: 3,588 Bytes
e457630 f91371a e457630 f91371a e457630 f91371a e457630 eb1bea4 e457630 eb1bea4 e457630 eb1bea4 e457630 7f770c3 cfe4d17 e457630 eb1bea4 e457630 f91371a e457630 f91371a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
---
license: apache-2.0
language:
- ru
- en
library_name: transformers
---
# RoBERTa-base from deepvk
<!-- Provide a quick summary of what the model is/does. -->
Pretrained bidirectional encoder for russian language.
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
Model was pretrained using standard MLM objective on a large text corpora including open social data, books, Wikipedia, webpages etc.
- **Developed by:** VK Applied Research Team
- **Model type:** RoBERTa
- **Languages:** Mostly russian and small fraction of other languages
- **License:** Apache 2.0
## How to Get Started with the Model
```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("deepvk/roberta-base")
model = AutoModel.from_pretrained("deepvk/roberta-base")
text = "Привет, мир!"
inputs = tokenizer(text, return_tensors='pt')
predictions = model(**inputs)
```
## Training Details
### Training Data
500gb of raw texts in total. Mix of the following data: Wikipedia, Books, Twitter comments, Pikabu, Proza.ru, Film subtitles,
News websites, Social corpus.
### Training Procedure
#### Training Hyperparameters
| Argument | Value |
|--------------------|----------------------|
| Training regime | fp16 mixed precision |
| Training framework | Fairseq |
| Optimizer | Adam |
| Adam betas | 0.9,0.98 |
| Adam eps | 1e-6 |
| Num training steps | 500k |
Model was trained using 8xA100 for ~22 days.
#### Architecture details
Standard RoBERTa-base parameters:
| Argument | Value |
|-------------------------|----------------|
|Activation function | gelu |
|Attention dropout | 0.1 |
|Dropout | 0.1 |
|Encoder attention heads | 12 |
|Encoder embed dim | 768 |
|Encoder ffn embed dim | 3,072 |
|Encoder layers | 12 |
|Max positions | 512 |
|Vocab size | 50266 |
|Tokenizer type | Byte-level BPE |
## Evaluation
Russian Super Glue dev set.
Best result across base size models in bold.
| Модель | RCB | PARus | MuSeRC | TERRa | RUSSE | RWSD | DaNetQA | Результат |
|------------------------------------------------------------------------|-----------|--------|---------|-------|---------|---------|---------|-----------|
| [vk-roberta-base](https://huggingface.co/deepvk/roberta-base) | 0.46 | 0.56 | 0.679 | 0.769 | 0.960 | 0.569 | 0.658 | 0.665 |
| [vk-deberta-distill](https://huggingface.co/deepvk/deberta-v1-distill) | 0.433 | 0.56 | 0.625 | 0.59 | 0.943 | 0.569 | 0.726 | 0.635 |
| [vk-deberta-base](https://huggingface.co/deepvk/deberta-v1-base) | 0.450 |**0.61**|**0.722**| 0.704 | 0.948 | 0.578 |**0.76** |**0.682** |
| [vk-bert-base](https://huggingface.co/deepvk/bert-base-uncased) | 0.467 | 0.57 | 0.587 | 0.704 | 0.953 |**0.583**| 0.737 | 0.657 |
| [sber-bert-base](https://huggingface.co/ai-forever/ruBert-base) | **0.491** |**0.61**| 0.663 | 0.769 |**0.962**| 0.574 | 0.678 | 0.678 |
| [sber-roberta-large](https://huggingface.co/ai-forever/ruRoberta-large)| 0.463 | 0.61 | 0.775 | 0.886 | 0.946 | 0.564 | 0.761 | 0.715 |
|