File size: 21,023 Bytes
7f49ac7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import models
from torchvision.models import inception_v3, Inception3
from torchvision.utils import save_image
try:
from torchvision.models.utils import load_state_dict_from_url
except ImportError:
from torch.utils.model_zoo import load_url as load_state_dict_from_url
import numpy as np
from scipy import linalg
from tqdm import tqdm
import pickle
import os
# Inception weights ported to Pytorch from
# http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz
FID_WEIGHTS_URL = 'https://github.com/mseitzer/pytorch-fid/releases/download/fid_weights/pt_inception-2015-12-05-6726825d.pth'
class InceptionV3(nn.Module):
"""Pretrained InceptionV3 network returning feature maps"""
# Index of default block of inception to return,
# corresponds to output of final average pooling
DEFAULT_BLOCK_INDEX = 3
# Maps feature dimensionality to their output blocks indices
BLOCK_INDEX_BY_DIM = {
64: 0, # First max pooling features
192: 1, # Second max pooling featurs
768: 2, # Pre-aux classifier features
2048: 3 # Final average pooling features
}
def __init__(self,
output_blocks=[DEFAULT_BLOCK_INDEX],
resize_input=True,
normalize_input=True,
requires_grad=False,
use_fid_inception=True):
"""Build pretrained InceptionV3
Parameters
----------
output_blocks : list of int
Indices of blocks to return features of. Possible values are:
- 0: corresponds to output of first max pooling
- 1: corresponds to output of second max pooling
- 2: corresponds to output which is fed to aux classifier
- 3: corresponds to output of final average pooling
resize_input : bool
If true, bilinearly resizes input to width and height 299 before
feeding input to model. As the network without fully connected
layers is fully convolutional, it should be able to handle inputs
of arbitrary size, so resizing might not be strictly needed
normalize_input : bool
If true, scales the input from range (0, 1) to the range the
pretrained Inception network expects, namely (-1, 1)
requires_grad : bool
If true, parameters of the model require gradients. Possibly useful
for finetuning the network
use_fid_inception : bool
If true, uses the pretrained Inception model used in Tensorflow's
FID implementation. If false, uses the pretrained Inception model
available in torchvision. The FID Inception model has different
weights and a slightly different structure from torchvision's
Inception model. If you want to compute FID scores, you are
strongly advised to set this parameter to true to get comparable
results.
"""
super(InceptionV3, self).__init__()
self.resize_input = resize_input
self.normalize_input = normalize_input
self.output_blocks = sorted(output_blocks)
self.last_needed_block = max(output_blocks)
assert self.last_needed_block <= 3, \
'Last possible output block index is 3'
self.blocks = nn.ModuleList()
if use_fid_inception:
inception = fid_inception_v3()
else:
inception = models.inception_v3(pretrained=True)
# Block 0: input to maxpool1
block0 = [
inception.Conv2d_1a_3x3,
inception.Conv2d_2a_3x3,
inception.Conv2d_2b_3x3,
nn.MaxPool2d(kernel_size=3, stride=2)
]
self.blocks.append(nn.Sequential(*block0))
# Block 1: maxpool1 to maxpool2
if self.last_needed_block >= 1:
block1 = [
inception.Conv2d_3b_1x1,
inception.Conv2d_4a_3x3,
nn.MaxPool2d(kernel_size=3, stride=2)
]
self.blocks.append(nn.Sequential(*block1))
# Block 2: maxpool2 to aux classifier
if self.last_needed_block >= 2:
block2 = [
inception.Mixed_5b,
inception.Mixed_5c,
inception.Mixed_5d,
inception.Mixed_6a,
inception.Mixed_6b,
inception.Mixed_6c,
inception.Mixed_6d,
inception.Mixed_6e,
]
self.blocks.append(nn.Sequential(*block2))
# Block 3: aux classifier to final avgpool
if self.last_needed_block >= 3:
block3 = [
inception.Mixed_7a,
inception.Mixed_7b,
inception.Mixed_7c,
nn.AdaptiveAvgPool2d(output_size=(1, 1))
]
self.blocks.append(nn.Sequential(*block3))
for param in self.parameters():
param.requires_grad = requires_grad
def forward(self, inp):
"""Get Inception feature maps
Parameters
----------
inp : torch.autograd.Variable
Input tensor of shape Bx3xHxW. Values are expected to be in
range (0, 1)
Returns
-------
List of torch.autograd.Variable, corresponding to the selected output
block, sorted ascending by index
"""
outp = []
x = inp
if self.resize_input:
x = F.interpolate(x,
size=(299, 299),
mode='bilinear',
align_corners=False)
if self.normalize_input:
x = 2 * x - 1 # Scale from range (0, 1) to range (-1, 1)
for idx, block in enumerate(self.blocks):
x = block(x)
if idx in self.output_blocks:
outp.append(x)
if idx == self.last_needed_block:
break
return outp
def fid_inception_v3():
"""Build pretrained Inception model for FID computation
The Inception model for FID computation uses a different set of weights
and has a slightly different structure than torchvision's Inception.
This method first constructs torchvision's Inception and then patches the
necessary parts that are different in the FID Inception model.
"""
inception = models.inception_v3(num_classes=1008,
aux_logits=False,
pretrained=False)
inception.Mixed_5b = FIDInceptionA(192, pool_features=32)
inception.Mixed_5c = FIDInceptionA(256, pool_features=64)
inception.Mixed_5d = FIDInceptionA(288, pool_features=64)
inception.Mixed_6b = FIDInceptionC(768, channels_7x7=128)
inception.Mixed_6c = FIDInceptionC(768, channels_7x7=160)
inception.Mixed_6d = FIDInceptionC(768, channels_7x7=160)
inception.Mixed_6e = FIDInceptionC(768, channels_7x7=192)
inception.Mixed_7b = FIDInceptionE_1(1280)
inception.Mixed_7c = FIDInceptionE_2(2048)
state_dict = load_state_dict_from_url(FID_WEIGHTS_URL, progress=True)
inception.load_state_dict(state_dict)
return inception
class FIDInceptionA(models.inception.InceptionA):
"""InceptionA block patched for FID computation"""
def __init__(self, in_channels, pool_features):
super(FIDInceptionA, self).__init__(in_channels, pool_features)
def forward(self, x):
branch1x1 = self.branch1x1(x)
branch5x5 = self.branch5x5_1(x)
branch5x5 = self.branch5x5_2(branch5x5)
branch3x3dbl = self.branch3x3dbl_1(x)
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)
# Patch: Tensorflow's average pool does not use the padded zero's in
# its average calculation
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1,
count_include_pad=False)
branch_pool = self.branch_pool(branch_pool)
outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool]
return torch.cat(outputs, 1)
class FIDInceptionC(models.inception.InceptionC):
"""InceptionC block patched for FID computation"""
def __init__(self, in_channels, channels_7x7):
super(FIDInceptionC, self).__init__(in_channels, channels_7x7)
def forward(self, x):
branch1x1 = self.branch1x1(x)
branch7x7 = self.branch7x7_1(x)
branch7x7 = self.branch7x7_2(branch7x7)
branch7x7 = self.branch7x7_3(branch7x7)
branch7x7dbl = self.branch7x7dbl_1(x)
branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl)
branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl)
branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl)
branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl)
# Patch: Tensorflow's average pool does not use the padded zero's in
# its average calculation
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1,
count_include_pad=False)
branch_pool = self.branch_pool(branch_pool)
outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool]
return torch.cat(outputs, 1)
class FIDInceptionE_1(models.inception.InceptionE):
"""First InceptionE block patched for FID computation"""
def __init__(self, in_channels):
super(FIDInceptionE_1, self).__init__(in_channels)
def forward(self, x):
branch1x1 = self.branch1x1(x)
branch3x3 = self.branch3x3_1(x)
branch3x3 = [
self.branch3x3_2a(branch3x3),
self.branch3x3_2b(branch3x3),
]
branch3x3 = torch.cat(branch3x3, 1)
branch3x3dbl = self.branch3x3dbl_1(x)
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
branch3x3dbl = [
self.branch3x3dbl_3a(branch3x3dbl),
self.branch3x3dbl_3b(branch3x3dbl),
]
branch3x3dbl = torch.cat(branch3x3dbl, 1)
# Patch: Tensorflow's average pool does not use the padded zero's in
# its average calculation
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1,
count_include_pad=False)
branch_pool = self.branch_pool(branch_pool)
outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool]
return torch.cat(outputs, 1)
class FIDInceptionE_2(models.inception.InceptionE):
"""Second InceptionE block patched for FID computation"""
def __init__(self, in_channels):
super(FIDInceptionE_2, self).__init__(in_channels)
def forward(self, x):
branch1x1 = self.branch1x1(x)
branch3x3 = self.branch3x3_1(x)
branch3x3 = [
self.branch3x3_2a(branch3x3),
self.branch3x3_2b(branch3x3),
]
branch3x3 = torch.cat(branch3x3, 1)
branch3x3dbl = self.branch3x3dbl_1(x)
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
branch3x3dbl = [
self.branch3x3dbl_3a(branch3x3dbl),
self.branch3x3dbl_3b(branch3x3dbl),
]
branch3x3dbl = torch.cat(branch3x3dbl, 1)
# Patch: The FID Inception model uses max pooling instead of average
# pooling. This is likely an error in this specific Inception
# implementation, as other Inception models use average pooling here
# (which matches the description in the paper).
branch_pool = F.max_pool2d(x, kernel_size=3, stride=1, padding=1)
branch_pool = self.branch_pool(branch_pool)
outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool]
return torch.cat(outputs, 1)
class Inception3Feature(Inception3):
def forward(self, x):
if x.shape[2] != 299 or x.shape[3] != 299:
x = F.interpolate(x, size=(299, 299), mode='bilinear', align_corners=True)
x = self.Conv2d_1a_3x3(x) # 299 x 299 x 3
x = self.Conv2d_2a_3x3(x) # 149 x 149 x 32
x = self.Conv2d_2b_3x3(x) # 147 x 147 x 32
x = F.max_pool2d(x, kernel_size=3, stride=2) # 147 x 147 x 64
x = self.Conv2d_3b_1x1(x) # 73 x 73 x 64
x = self.Conv2d_4a_3x3(x) # 73 x 73 x 80
x = F.max_pool2d(x, kernel_size=3, stride=2) # 71 x 71 x 192
x = self.Mixed_5b(x) # 35 x 35 x 192
x = self.Mixed_5c(x) # 35 x 35 x 256
x = self.Mixed_5d(x) # 35 x 35 x 288
x = self.Mixed_6a(x) # 35 x 35 x 288
x = self.Mixed_6b(x) # 17 x 17 x 768
x = self.Mixed_6c(x) # 17 x 17 x 768
x = self.Mixed_6d(x) # 17 x 17 x 768
x = self.Mixed_6e(x) # 17 x 17 x 768
x = self.Mixed_7a(x) # 17 x 17 x 768
x = self.Mixed_7b(x) # 8 x 8 x 1280
x = self.Mixed_7c(x) # 8 x 8 x 2048
x = F.avg_pool2d(x, kernel_size=8) # 8 x 8 x 2048
return x.view(x.shape[0], x.shape[1]) # 1 x 1 x 2048
def load_patched_inception_v3():
# inception = inception_v3(pretrained=True)
# inception_feat = Inception3Feature()
# inception_feat.load_state_dict(inception.state_dict())
inception_feat = InceptionV3([3], normalize_input=False)
return inception_feat
@torch.no_grad()
def extract_features(loader, inception, device):
pbar = tqdm(loader)
feature_list = []
for img in pbar:
img = img.to(device)
feature = inception(img)[0].view(img.shape[0], -1)
feature_list.append(feature.to('cpu'))
features = torch.cat(feature_list, 0)
return features
@torch.no_grad()
def extract_feature_from_samples(generator, inception, device='cuda'):
n_batch = n_sample // batch_size
resid = n_sample - (n_batch * batch_size)
batch_sizes = [batch_size] * n_batch + [resid]
features = []
for batch in tqdm(batch_sizes):
latent = torch.randn(batch, 512, device=device)
img, _ = g([latent], truncation=truncation, truncation_latent=truncation_latent)
feat = inception(img)[0].view(img.shape[0], -1)
features.append(feat.to('cpu'))
features = torch.cat(features, 0)
return features
@torch.no_grad()
def extract_feature_from_generator_fn(generator_fn, inception, device='cuda', total=1000):
features = []
for batch in tqdm(generator_fn, total=total):
feat = inception(batch)[0].view(batch.shape[0], -1)
features.append(feat.to('cpu'))
features = torch.cat(features, 0).detach()
return features.numpy()
def calc_fid(sample_features, real_features=None, real_mean=None, real_cov=None, eps=1e-6):
sample_mean = np.mean(sample_features, 0)
sample_cov = np.cov(sample_features, rowvar=False)
if real_features is not None:
real_mean = np.mean(real_features, 0)
real_cov = np.cov(real_features, rowvar=False)
cov_sqrt, _ = linalg.sqrtm(sample_cov @ real_cov, disp=False)
if not np.isfinite(cov_sqrt).all():
print('product of cov matrices is singular')
offset = np.eye(sample_cov.shape[0]) * eps
cov_sqrt = linalg.sqrtm((sample_cov + offset) @ (real_cov + offset))
if np.iscomplexobj(cov_sqrt):
if not np.allclose(np.diagonal(cov_sqrt).imag, 0, atol=1e-3):
m = np.max(np.abs(cov_sqrt.imag))
raise ValueError(f'Imaginary component {m}')
cov_sqrt = cov_sqrt.real
mean_diff = sample_mean - real_mean
mean_norm = mean_diff @ mean_diff
trace = np.trace(sample_cov) + np.trace(real_cov) - 2 * np.trace(cov_sqrt)
fid = mean_norm + trace
return fid
if __name__ == "__main__":
#from utils import PairedMultiDataset, InfiniteSamplerWrapper, make_folders, AverageMeter
from torch.utils.data import DataLoader
from torchvision import utils as vutils
IM_SIZE = 1024
BATCH_SIZE = 16
DATALOADER_WORKERS = 8
NBR_CLS = 2000
TRIAL_NAME = 'trial_vae_512_1'
SAVE_FOLDER = './'
from torchvision.datasets import ImageFolder
'''
data_root_colorful = '../images/celebA/CelebA_512/img'
data_root_sketch_1 = './sketch_simplification/vggadin_iter_700'
data_root_sketch_2 = './sketch_simplification/vggadin_iter_1900'
data_root_sketch_3 = './sketch_simplification/vggadin_iter_2300'
dataset = PairedMultiDataset(data_root_colorful, data_root_sketch_1, data_root_sketch_2, data_root_sketch_3, im_size=IM_SIZE, rand_crop=False)
dataloader = iter(DataLoader(dataset, BATCH_SIZE, shuffle=False, num_workers=DATALOADER_WORKERS, pin_memory=True))
from pretrain_ae import StyleEncoder, ContentEncoder, Decoder
import pickle
from refine_ae_as_gan import AE, RefineGenerator
from utils import load_params
net_ig = RefineGenerator().cuda()
net_ig = nn.DataParallel(net_ig)
ckpt = './train_results/trial_refine_ae_as_gan_1024_2/models/4.pth'
if ckpt is not None:
ckpt = torch.load(ckpt)
#net_ig.load_state_dict(ckpt['ig'])
#net_id.load_state_dict(ckpt['id'])
net_ig_ema = ckpt['ig_ema']
load_params(net_ig, net_ig_ema)
net_ig = net_ig.module
#net_ig.eval()
net_ae = AE()
net_ae.load_state_dicts('./train_results/trial_vae_512_1/models/176000.pth')
net_ae.cuda()
net_ae.eval()
#style_encoder = StyleEncoder(nbr_cls=NBR_CLS).cuda()
#content_encoder = ContentEncoder().cuda()
#decoder = Decoder().cuda()
'''
def real_image_loader(dataloader, n_batches=10):
counter = 0
while counter < n_batches:
counter += 1
rgb_img, _ = next(dataloader)
if counter == 1:
vutils.save_image(0.5*(rgb_img+1), 'tmp_real.jpg')
yield rgb_img.cuda()
'''
@torch.no_grad()
def image_generator_1(dataloader, n_batches=10):
counter = 0
while counter < n_batches:
counter += 1
rgb_img, _, _, skt_img = next(dataloader)
rgb_img = rgb_img.cuda()
skt_img = skt_img.cuda()
style_feat, _ = style_encoder(rgb_img)
content_feats = content_encoder( F.interpolate( skt_img , size=512 ) )
gimg = decoder(content_feats, style_feat)
vutils.save_image(0.5*(gimg+1), 'tmp.jpg')
yield gimg
from utils import true_randperm
@torch.no_grad()
def image_generator(dataset, net_ae, net_ig, n_batches=500):
counter = 0
dataloader = iter(DataLoader(dataset, BATCH_SIZE, shuffle=False, num_workers=DATALOADER_WORKERS, pin_memory=False))
while counter < n_batches:
counter += 1
rgb_img, _, _, skt_img = next(dataloader)
rgb_img = F.interpolate( rgb_img, size=512 ).cuda()
skt_img = F.interpolate( skt_img, size=512 ).cuda()
#perm = true_randperm(rgb_img.shape[0], device=rgb_img.device)
gimg_ae, style_feat = net_ae(skt_img, rgb_img)
g_image = net_ig(gimg_ae, style_feat, skt_img)
if counter == 1:
vutils.save_image(0.5*(g_image+1), 'tmp.jpg')
yield g_image
'''
inception = load_patched_inception_v3().cuda()
inception.eval()
path_a = '../../../database/images/celebaMask/CelebA_1024'
path_b = '../../stylegan/celebahq_samples'
from torchvision import transforms
transform = transforms.Compose(
[
transforms.Resize( (299, 299) ),
#transforms.RandomHorizontalFlip(p=0.5 if args.flip else 0),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
]
)
dset_a = ImageFolder(path_a, transform)
loader_a = iter(DataLoader(dset_a, batch_size=16, num_workers=4))
real_features = extract_feature_from_generator_fn(
real_image_loader(loader_a, n_batches=900), inception )
real_mean = np.mean(real_features, 0)
real_cov = np.cov(real_features, rowvar=False)
#pickle.dump({'feats': real_features, 'mean': real_mean, 'cov': real_cov}, open('celeba_fid_feats.npy','wb') )
#real_features = pickle.load( open('celeba_fid_feats.npy', 'rb') )
#real_mean = real_features['mean']
#real_cov = real_features['cov']
#sample_features = extract_feature_from_generator_fn( real_image_loader(dataloader, n_batches=100), inception )
dset_b = ImageFolder(path_b, transform)
loader_b = iter(DataLoader(dset_b, batch_size=16, num_workers=4))
sample_features = extract_feature_from_generator_fn(
real_image_loader(loader_b, n_batches=900), inception )
#sample_features = extract_feature_from_generator_fn(
# image_generator(dataset, net_ae, net_ig, n_batches=1800), inception,
# total=1800 )
#fid = calc_fid(sample_features, real_mean=real_features['mean'], real_cov=real_features['cov'])
fid = calc_fid(sample_features, real_mean=real_mean, real_cov=real_cov)
print(fid) |