File size: 21,023 Bytes
7f49ac7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import models
from torchvision.models import inception_v3, Inception3
from torchvision.utils import save_image

try:
    from torchvision.models.utils import load_state_dict_from_url
except ImportError:
    from torch.utils.model_zoo import load_url as load_state_dict_from_url

import numpy as np
from scipy import linalg
from tqdm import tqdm
import pickle
import os

# Inception weights ported to Pytorch from
# http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz
FID_WEIGHTS_URL = 'https://github.com/mseitzer/pytorch-fid/releases/download/fid_weights/pt_inception-2015-12-05-6726825d.pth'


class InceptionV3(nn.Module):
    """Pretrained InceptionV3 network returning feature maps"""

    # Index of default block of inception to return,
    # corresponds to output of final average pooling
    DEFAULT_BLOCK_INDEX = 3

    # Maps feature dimensionality to their output blocks indices
    BLOCK_INDEX_BY_DIM = {
        64: 0,   # First max pooling features
        192: 1,  # Second max pooling featurs
        768: 2,  # Pre-aux classifier features
        2048: 3  # Final average pooling features
    }

    def __init__(self,
                 output_blocks=[DEFAULT_BLOCK_INDEX],
                 resize_input=True,
                 normalize_input=True,
                 requires_grad=False,
                 use_fid_inception=True):
        """Build pretrained InceptionV3
        Parameters
        ----------
        output_blocks : list of int
            Indices of blocks to return features of. Possible values are:
                - 0: corresponds to output of first max pooling
                - 1: corresponds to output of second max pooling
                - 2: corresponds to output which is fed to aux classifier
                - 3: corresponds to output of final average pooling
        resize_input : bool
            If true, bilinearly resizes input to width and height 299 before
            feeding input to model. As the network without fully connected
            layers is fully convolutional, it should be able to handle inputs
            of arbitrary size, so resizing might not be strictly needed
        normalize_input : bool
            If true, scales the input from range (0, 1) to the range the
            pretrained Inception network expects, namely (-1, 1)
        requires_grad : bool
            If true, parameters of the model require gradients. Possibly useful
            for finetuning the network
        use_fid_inception : bool
            If true, uses the pretrained Inception model used in Tensorflow's
            FID implementation. If false, uses the pretrained Inception model
            available in torchvision. The FID Inception model has different
            weights and a slightly different structure from torchvision's
            Inception model. If you want to compute FID scores, you are
            strongly advised to set this parameter to true to get comparable
            results.
        """
        super(InceptionV3, self).__init__()

        self.resize_input = resize_input
        self.normalize_input = normalize_input
        self.output_blocks = sorted(output_blocks)
        self.last_needed_block = max(output_blocks)

        assert self.last_needed_block <= 3, \
            'Last possible output block index is 3'

        self.blocks = nn.ModuleList()

        if use_fid_inception:
            inception = fid_inception_v3()
        else:
            inception = models.inception_v3(pretrained=True)

        # Block 0: input to maxpool1
        block0 = [
            inception.Conv2d_1a_3x3,
            inception.Conv2d_2a_3x3,
            inception.Conv2d_2b_3x3,
            nn.MaxPool2d(kernel_size=3, stride=2)
        ]
        self.blocks.append(nn.Sequential(*block0))

        # Block 1: maxpool1 to maxpool2
        if self.last_needed_block >= 1:
            block1 = [
                inception.Conv2d_3b_1x1,
                inception.Conv2d_4a_3x3,
                nn.MaxPool2d(kernel_size=3, stride=2)
            ]
            self.blocks.append(nn.Sequential(*block1))

        # Block 2: maxpool2 to aux classifier
        if self.last_needed_block >= 2:
            block2 = [
                inception.Mixed_5b,
                inception.Mixed_5c,
                inception.Mixed_5d,
                inception.Mixed_6a,
                inception.Mixed_6b,
                inception.Mixed_6c,
                inception.Mixed_6d,
                inception.Mixed_6e,
            ]
            self.blocks.append(nn.Sequential(*block2))

        # Block 3: aux classifier to final avgpool
        if self.last_needed_block >= 3:
            block3 = [
                inception.Mixed_7a,
                inception.Mixed_7b,
                inception.Mixed_7c,
                nn.AdaptiveAvgPool2d(output_size=(1, 1))
            ]
            self.blocks.append(nn.Sequential(*block3))

        for param in self.parameters():
            param.requires_grad = requires_grad

    def forward(self, inp):
        """Get Inception feature maps
        Parameters
        ----------
        inp : torch.autograd.Variable
            Input tensor of shape Bx3xHxW. Values are expected to be in
            range (0, 1)
        Returns
        -------
        List of torch.autograd.Variable, corresponding to the selected output
        block, sorted ascending by index
        """
        outp = []
        x = inp

        if self.resize_input:
            x = F.interpolate(x,
                              size=(299, 299),
                              mode='bilinear',
                              align_corners=False)

        if self.normalize_input:
            x = 2 * x - 1  # Scale from range (0, 1) to range (-1, 1)

        for idx, block in enumerate(self.blocks):
            x = block(x)
            if idx in self.output_blocks:
                outp.append(x)

            if idx == self.last_needed_block:
                break

        return outp


def fid_inception_v3():
    """Build pretrained Inception model for FID computation
    The Inception model for FID computation uses a different set of weights
    and has a slightly different structure than torchvision's Inception.
    This method first constructs torchvision's Inception and then patches the
    necessary parts that are different in the FID Inception model.
    """
    inception = models.inception_v3(num_classes=1008,
                                    aux_logits=False,
                                    pretrained=False)
    inception.Mixed_5b = FIDInceptionA(192, pool_features=32)
    inception.Mixed_5c = FIDInceptionA(256, pool_features=64)
    inception.Mixed_5d = FIDInceptionA(288, pool_features=64)
    inception.Mixed_6b = FIDInceptionC(768, channels_7x7=128)
    inception.Mixed_6c = FIDInceptionC(768, channels_7x7=160)
    inception.Mixed_6d = FIDInceptionC(768, channels_7x7=160)
    inception.Mixed_6e = FIDInceptionC(768, channels_7x7=192)
    inception.Mixed_7b = FIDInceptionE_1(1280)
    inception.Mixed_7c = FIDInceptionE_2(2048)

    state_dict = load_state_dict_from_url(FID_WEIGHTS_URL, progress=True)
    inception.load_state_dict(state_dict)
    return inception


class FIDInceptionA(models.inception.InceptionA):
    """InceptionA block patched for FID computation"""
    def __init__(self, in_channels, pool_features):
        super(FIDInceptionA, self).__init__(in_channels, pool_features)

    def forward(self, x):
        branch1x1 = self.branch1x1(x)

        branch5x5 = self.branch5x5_1(x)
        branch5x5 = self.branch5x5_2(branch5x5)

        branch3x3dbl = self.branch3x3dbl_1(x)
        branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
        branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)

        # Patch: Tensorflow's average pool does not use the padded zero's in
        # its average calculation
        branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1,
                                   count_include_pad=False)
        branch_pool = self.branch_pool(branch_pool)

        outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool]
        return torch.cat(outputs, 1)


class FIDInceptionC(models.inception.InceptionC):
    """InceptionC block patched for FID computation"""
    def __init__(self, in_channels, channels_7x7):
        super(FIDInceptionC, self).__init__(in_channels, channels_7x7)

    def forward(self, x):
        branch1x1 = self.branch1x1(x)

        branch7x7 = self.branch7x7_1(x)
        branch7x7 = self.branch7x7_2(branch7x7)
        branch7x7 = self.branch7x7_3(branch7x7)

        branch7x7dbl = self.branch7x7dbl_1(x)
        branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl)
        branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl)
        branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl)
        branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl)

        # Patch: Tensorflow's average pool does not use the padded zero's in
        # its average calculation
        branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1,
                                   count_include_pad=False)
        branch_pool = self.branch_pool(branch_pool)

        outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool]
        return torch.cat(outputs, 1)


class FIDInceptionE_1(models.inception.InceptionE):
    """First InceptionE block patched for FID computation"""
    def __init__(self, in_channels):
        super(FIDInceptionE_1, self).__init__(in_channels)

    def forward(self, x):
        branch1x1 = self.branch1x1(x)

        branch3x3 = self.branch3x3_1(x)
        branch3x3 = [
            self.branch3x3_2a(branch3x3),
            self.branch3x3_2b(branch3x3),
        ]
        branch3x3 = torch.cat(branch3x3, 1)

        branch3x3dbl = self.branch3x3dbl_1(x)
        branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
        branch3x3dbl = [
            self.branch3x3dbl_3a(branch3x3dbl),
            self.branch3x3dbl_3b(branch3x3dbl),
        ]
        branch3x3dbl = torch.cat(branch3x3dbl, 1)

        # Patch: Tensorflow's average pool does not use the padded zero's in
        # its average calculation
        branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1,
                                   count_include_pad=False)
        branch_pool = self.branch_pool(branch_pool)

        outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool]
        return torch.cat(outputs, 1)


class FIDInceptionE_2(models.inception.InceptionE):
    """Second InceptionE block patched for FID computation"""
    def __init__(self, in_channels):
        super(FIDInceptionE_2, self).__init__(in_channels)

    def forward(self, x):
        branch1x1 = self.branch1x1(x)

        branch3x3 = self.branch3x3_1(x)
        branch3x3 = [
            self.branch3x3_2a(branch3x3),
            self.branch3x3_2b(branch3x3),
        ]
        branch3x3 = torch.cat(branch3x3, 1)

        branch3x3dbl = self.branch3x3dbl_1(x)
        branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
        branch3x3dbl = [
            self.branch3x3dbl_3a(branch3x3dbl),
            self.branch3x3dbl_3b(branch3x3dbl),
        ]
        branch3x3dbl = torch.cat(branch3x3dbl, 1)

        # Patch: The FID Inception model uses max pooling instead of average
        # pooling. This is likely an error in this specific Inception
        # implementation, as other Inception models use average pooling here
        # (which matches the description in the paper).
        branch_pool = F.max_pool2d(x, kernel_size=3, stride=1, padding=1)
        branch_pool = self.branch_pool(branch_pool)

        outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool]
        return torch.cat(outputs, 1)


class Inception3Feature(Inception3):
    def forward(self, x):
        if x.shape[2] != 299 or x.shape[3] != 299:
            x = F.interpolate(x, size=(299, 299), mode='bilinear', align_corners=True)

        x = self.Conv2d_1a_3x3(x)  # 299 x 299 x 3
        x = self.Conv2d_2a_3x3(x)  # 149 x 149 x 32
        x = self.Conv2d_2b_3x3(x)  # 147 x 147 x 32
        x = F.max_pool2d(x, kernel_size=3, stride=2)  # 147 x 147 x 64

        x = self.Conv2d_3b_1x1(x)  # 73 x 73 x 64
        x = self.Conv2d_4a_3x3(x)  # 73 x 73 x 80
        x = F.max_pool2d(x, kernel_size=3, stride=2)  # 71 x 71 x 192

        x = self.Mixed_5b(x)  # 35 x 35 x 192
        x = self.Mixed_5c(x)  # 35 x 35 x 256
        x = self.Mixed_5d(x)  # 35 x 35 x 288

        x = self.Mixed_6a(x)  # 35 x 35 x 288
        x = self.Mixed_6b(x)  # 17 x 17 x 768
        x = self.Mixed_6c(x)  # 17 x 17 x 768
        x = self.Mixed_6d(x)  # 17 x 17 x 768
        x = self.Mixed_6e(x)  # 17 x 17 x 768

        x = self.Mixed_7a(x)  # 17 x 17 x 768
        x = self.Mixed_7b(x)  # 8 x 8 x 1280
        x = self.Mixed_7c(x)  # 8 x 8 x 2048

        x = F.avg_pool2d(x, kernel_size=8)  # 8 x 8 x 2048

        return x.view(x.shape[0], x.shape[1])  # 1 x 1 x 2048


def load_patched_inception_v3():
    # inception = inception_v3(pretrained=True)
    # inception_feat = Inception3Feature()
    # inception_feat.load_state_dict(inception.state_dict())
    inception_feat = InceptionV3([3], normalize_input=False)

    return inception_feat


@torch.no_grad()
def extract_features(loader, inception, device):
    pbar = tqdm(loader)

    feature_list = []

    for img in pbar:
        img = img.to(device)
        feature = inception(img)[0].view(img.shape[0], -1)
        feature_list.append(feature.to('cpu'))

    features = torch.cat(feature_list, 0)

    return features



@torch.no_grad()
def extract_feature_from_samples(generator, inception, device='cuda'):
    n_batch = n_sample // batch_size
    resid = n_sample - (n_batch * batch_size)
    batch_sizes = [batch_size] * n_batch + [resid]
    features = []

    for batch in tqdm(batch_sizes):
        latent = torch.randn(batch, 512, device=device)
        img, _ = g([latent], truncation=truncation, truncation_latent=truncation_latent)
        feat = inception(img)[0].view(img.shape[0], -1)
        features.append(feat.to('cpu'))

    features = torch.cat(features, 0)

    return features


@torch.no_grad()
def extract_feature_from_generator_fn(generator_fn, inception, device='cuda', total=1000):
    features = []
    for batch in tqdm(generator_fn, total=total):
        feat = inception(batch)[0].view(batch.shape[0], -1)
        features.append(feat.to('cpu'))

    features = torch.cat(features, 0).detach()
    return features.numpy()


def calc_fid(sample_features, real_features=None, real_mean=None, real_cov=None, eps=1e-6):
    sample_mean = np.mean(sample_features, 0)
    sample_cov = np.cov(sample_features, rowvar=False)

    if real_features is not None:
        real_mean = np.mean(real_features, 0)
        real_cov = np.cov(real_features, rowvar=False)

    cov_sqrt, _ = linalg.sqrtm(sample_cov @ real_cov, disp=False)

    if not np.isfinite(cov_sqrt).all():
        print('product of cov matrices is singular')
        offset = np.eye(sample_cov.shape[0]) * eps
        cov_sqrt = linalg.sqrtm((sample_cov + offset) @ (real_cov + offset))

    if np.iscomplexobj(cov_sqrt):
        if not np.allclose(np.diagonal(cov_sqrt).imag, 0, atol=1e-3):
            m = np.max(np.abs(cov_sqrt.imag))

            raise ValueError(f'Imaginary component {m}')

        cov_sqrt = cov_sqrt.real

    mean_diff = sample_mean - real_mean
    mean_norm = mean_diff @ mean_diff

    trace = np.trace(sample_cov) + np.trace(real_cov) - 2 * np.trace(cov_sqrt)

    fid = mean_norm + trace

    return fid


if __name__ == "__main__":
    #from utils import PairedMultiDataset, InfiniteSamplerWrapper, make_folders, AverageMeter
    from torch.utils.data import DataLoader
    from torchvision import utils as vutils
    
    IM_SIZE = 1024
    BATCH_SIZE = 16
    DATALOADER_WORKERS = 8
    NBR_CLS = 2000
    TRIAL_NAME = 'trial_vae_512_1'
    SAVE_FOLDER = './'

    from torchvision.datasets import ImageFolder

    '''
    data_root_colorful = '../images/celebA/CelebA_512/img'
    data_root_sketch_1 = './sketch_simplification/vggadin_iter_700'
    data_root_sketch_2 = './sketch_simplification/vggadin_iter_1900'
    data_root_sketch_3 = './sketch_simplification/vggadin_iter_2300'

    dataset = PairedMultiDataset(data_root_colorful, data_root_sketch_1, data_root_sketch_2, data_root_sketch_3, im_size=IM_SIZE, rand_crop=False)
    dataloader = iter(DataLoader(dataset, BATCH_SIZE, shuffle=False, num_workers=DATALOADER_WORKERS, pin_memory=True))


    from pretrain_ae import StyleEncoder, ContentEncoder, Decoder
    import pickle
    from refine_ae_as_gan import AE, RefineGenerator
    from utils import load_params

    net_ig = RefineGenerator().cuda()
    net_ig = nn.DataParallel(net_ig)

    ckpt = './train_results/trial_refine_ae_as_gan_1024_2/models/4.pth'
    if ckpt is not None:
        ckpt = torch.load(ckpt)
        #net_ig.load_state_dict(ckpt['ig'])
        #net_id.load_state_dict(ckpt['id'])
        net_ig_ema = ckpt['ig_ema']
        load_params(net_ig, net_ig_ema)
    net_ig = net_ig.module
    #net_ig.eval()

    net_ae = AE()
    net_ae.load_state_dicts('./train_results/trial_vae_512_1/models/176000.pth')
    net_ae.cuda()
    net_ae.eval()

    #style_encoder = StyleEncoder(nbr_cls=NBR_CLS).cuda()
    #content_encoder = ContentEncoder().cuda()
    #decoder = Decoder().cuda()
    '''

    def real_image_loader(dataloader, n_batches=10):
        counter = 0
        while counter < n_batches:
            counter += 1
            rgb_img, _ = next(dataloader)
            if counter == 1:
                vutils.save_image(0.5*(rgb_img+1), 'tmp_real.jpg')  
            yield rgb_img.cuda()

    '''
    @torch.no_grad()
    def image_generator_1(dataloader, n_batches=10):
        counter = 0
        while counter < n_batches:
            counter += 1
            rgb_img, _, _, skt_img = next(dataloader)
            rgb_img = rgb_img.cuda()
            skt_img = skt_img.cuda()

            style_feat, _ = style_encoder(rgb_img)
            content_feats = content_encoder( F.interpolate( skt_img , size=512 ) )
            gimg = decoder(content_feats, style_feat)

            vutils.save_image(0.5*(gimg+1), 'tmp.jpg')        
            yield gimg

    from utils import true_randperm
    @torch.no_grad()
    def image_generator(dataset, net_ae, net_ig, n_batches=500):
        counter = 0
        dataloader = iter(DataLoader(dataset, BATCH_SIZE, shuffle=False, num_workers=DATALOADER_WORKERS, pin_memory=False))

        while counter < n_batches:
            counter += 1
            rgb_img, _, _, skt_img = next(dataloader)
            rgb_img = F.interpolate( rgb_img, size=512 ).cuda()
            skt_img = F.interpolate( skt_img, size=512 ).cuda()

            #perm = true_randperm(rgb_img.shape[0], device=rgb_img.device)

            gimg_ae, style_feat = net_ae(skt_img, rgb_img)
            g_image = net_ig(gimg_ae, style_feat, skt_img)
            if counter == 1:
                vutils.save_image(0.5*(g_image+1), 'tmp.jpg')        
            yield g_image
    '''
    inception = load_patched_inception_v3().cuda()
    inception.eval()
    
    path_a = '../../../database/images/celebaMask/CelebA_1024'
    path_b = '../../stylegan/celebahq_samples'

    from torchvision import transforms

    transform = transforms.Compose(
        [
            transforms.Resize( (299, 299) ),
            #transforms.RandomHorizontalFlip(p=0.5 if args.flip else 0),
            transforms.ToTensor(),
            transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
        ]
    )

    dset_a = ImageFolder(path_a, transform)
    loader_a = iter(DataLoader(dset_a, batch_size=16, num_workers=4))

    real_features = extract_feature_from_generator_fn( 
        real_image_loader(loader_a, n_batches=900), inception )
    real_mean = np.mean(real_features, 0)
    real_cov = np.cov(real_features, rowvar=False)
    
    #pickle.dump({'feats': real_features, 'mean': real_mean, 'cov': real_cov}, open('celeba_fid_feats.npy','wb') ) 

    #real_features = pickle.load( open('celeba_fid_feats.npy', 'rb') )
    #real_mean = real_features['mean']
    #real_cov = real_features['cov']
    #sample_features = extract_feature_from_generator_fn( real_image_loader(dataloader, n_batches=100), inception )
    
    dset_b = ImageFolder(path_b, transform)
    loader_b = iter(DataLoader(dset_b, batch_size=16, num_workers=4))

    sample_features = extract_feature_from_generator_fn( 
        real_image_loader(loader_b, n_batches=900), inception )
    #sample_features = extract_feature_from_generator_fn( 
    #        image_generator(dataset, net_ae, net_ig, n_batches=1800), inception,
    #         total=1800 )

        #fid = calc_fid(sample_features, real_mean=real_features['mean'], real_cov=real_features['cov'])
    fid = calc_fid(sample_features, real_mean=real_mean, real_cov=real_cov)
        
    print(fid)