File size: 9,118 Bytes
7f49ac7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import torch
from torch import nn
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.data.dataloader import DataLoader
from torch.utils.data import Subset
from torchvision import transforms
from torchvision import utils as vutils

import argparse
import random
from tqdm import tqdm

from models import weights_init, Discriminator, Generator
from operation import copy_G_params, load_params, get_dir
from operation import ImageFolder, InfiniteSamplerWrapper
from diffaug import DiffAugment

#Vajira
from custom_data import ImageAndMaskDataFromSinGAN

policy = 'color,translation'
import lpips
percept = lpips.PerceptualLoss(model='net-lin', net='vgg', use_gpu=True)


#torch.backends.cudnn.benchmark = True


def crop_image_by_part(image, part):
    hw = image.shape[2]//2
    if part==0:
        return image[:,:,:hw,:hw]
    if part==1:
        return image[:,:,:hw,hw:]
    if part==2:
        return image[:,:,hw:,:hw]
    if part==3:
        return image[:,:,hw:,hw:]

def train_d(net, data, label="real"):
    """Train function of discriminator"""
    if label=="real":
        part = random.randint(0, 3)
        #part = random.randint(0, 4)
        pred, [rec_all, rec_small, rec_part] = net(data, label, part=part)
        
        # new modifications
        data_img = data[:,0:3, :, :]
        rec_all_img = rec_all[:, 0:3, :, :]
        rec_small_img = rec_small[:, 0:3, :, :]
        rec_part_img = rec_part[:, 0:3, :, :]

        #print("data shape=", data.shape)
        #print("rec_all shape=", rec_all.shape)
        err = F.relu(  torch.rand_like(pred) * 0.2 + 0.8 -  pred).mean() + \
            percept( rec_all_img, F.interpolate(data_img, rec_all.shape[2]) ).sum() +\
            percept( rec_small_img, F.interpolate(data_img, rec_small.shape[2]) ).sum() +\
            percept( rec_part_img, F.interpolate(crop_image_by_part(data_img, part), rec_part.shape[2]) ).sum()
        err.backward()
        return pred.mean().item(), rec_all, rec_small, rec_part
    else:
        pred = net(data, label)
        err = F.relu( torch.rand_like(pred) * 0.2 + 0.8 + pred).mean()
        err.backward()
        return pred.mean().item()
        

def train(args):

    #data_root = args.path
    total_iterations = args.iter
    checkpoint = args.ckpt
    batch_size = args.batch_size
    im_size = args.im_size
    ndf = 64
    ngf = 64
    nz = 256
    nlr = 0.0002
    nbeta1 = 0.5
    use_cuda = True
    multi_gpu = True
    dataloader_workers = 8
    current_iteration = 0
    save_interval = 100
    saved_model_folder, saved_image_folder = get_dir(args)
    
    device = torch.device("cpu")
    if use_cuda:
        device = torch.device("cuda:0")

    transform_list = [
            transforms.Resize((int(im_size),int(im_size))),
            transforms.RandomHorizontalFlip(),
            #transforms.ToTensor(), # removed by Vajira, check the dataloader
            #transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) # removed by Vajira, check the dataloader
        ]
    trans = transforms.Compose(transform_list)
    
    #if 'lmdb' in data_root:
    #    from operation import MultiResolutionDataset
    #    dataset = MultiResolutionDataset(data_root, trans, 1024)
    #else:
        #dataset = ImageFolder(root=data_root, transform=trans)
    dataset = ImageAndMaskDataFromSinGAN(args.path_img, args.path_mask, transform=trans)
    #print("dataset size=", len(dataset))
    if args.num_imgs_to_train == -1 :
        dataset = Subset(dataset, [i for i in range(0, len(dataset))])
    else:
        dataset = Subset(dataset, [i for i in range(0, args.num_imgs_to_train)]) # to control number of images to train
    #print("dataset size=", len(dataset))

    dataloader = iter(DataLoader(dataset, batch_size=batch_size, shuffle=False,
                      sampler=InfiniteSamplerWrapper(dataset), num_workers=dataloader_workers, pin_memory=True))
    '''
    loader = MultiEpochsDataLoader(dataset, batch_size=batch_size, 
                               shuffle=True, num_workers=dataloader_workers, 
                               pin_memory=True)
    dataloader = CudaDataLoader(loader, 'cuda')
    '''
    
    
    #from model_s import Generator, Discriminator
    netG = Generator(ngf=ngf, nz=nz, im_size=im_size, nc=args.nc)
    netG.apply(weights_init)

    netD = Discriminator(ndf=ndf, im_size=im_size, nc=args.nc)
    netD.apply(weights_init) 

    netG.to(device)
    netD.to(device)

    avg_param_G = copy_G_params(netG)

    fixed_noise = torch.FloatTensor(8, nz).normal_(0, 1).to(device)
    
    if checkpoint != 'None':
        ckpt = torch.load(checkpoint)
        netG.load_state_dict(ckpt['g'])
        netD.load_state_dict(ckpt['d'])
        avg_param_G = ckpt['g_ema']
        optimizerG.load_state_dict(ckpt['opt_g'])
        optimizerD.load_state_dict(ckpt['opt_d'])
        current_iteration = int(checkpoint.split('_')[-1].split('.')[0])
        del ckpt
        
    if multi_gpu:
        netG = nn.DataParallel(netG.to(device))
        netD = nn.DataParallel(netD.to(device))

    optimizerG = optim.Adam(netG.parameters(), lr=nlr, betas=(nbeta1, 0.999))
    optimizerD = optim.Adam(netD.parameters(), lr=nlr, betas=(nbeta1, 0.999))
    
    for iteration in tqdm(range(current_iteration, total_iterations+1)):
        real_image = next(dataloader)
        real_image = real_image.to(device)
        current_batch_size = real_image.size(0)
        noise = torch.Tensor(current_batch_size, nz).normal_(0, 1).to(device)

        fake_images = netG(noise)

        real_image = DiffAugment(real_image, policy=policy)
        fake_images = [DiffAugment(fake, policy=policy) for fake in fake_images]
        
        ## 2. train Discriminator
        netD.zero_grad()

        err_dr, rec_img_all, rec_img_small, rec_img_part = train_d(netD, real_image, label="real")
        train_d(netD, [fi.detach() for fi in fake_images], label="fake")
        optimizerD.step()
        
        ## 3. train Generator
        netG.zero_grad()
        pred_g = netD(fake_images, "fake")
        err_g = -pred_g.mean()

        err_g.backward()
        optimizerG.step()

        for p, avg_p in zip(netG.parameters(), avg_param_G):
            avg_p.mul_(0.999).add_(0.001 * p.data)

        if iteration % 100 == 0:
            print("GAN: loss d: %.5f    loss g: %.5f"%(err_dr, -err_g.item()))

        if iteration % (save_interval*10) == 0:
            backup_para = copy_G_params(netG)
            load_params(netG, avg_param_G)
            with torch.no_grad():
                vutils.save_image(netG(fixed_noise)[0].add(1).mul(0.5), saved_image_folder+'/%d.png'%iteration, nrow=4)
                vutils.save_image( torch.cat([
                        F.interpolate(real_image, 128), 
                        rec_img_all, rec_img_small,
                        rec_img_part]).add(1).mul(0.5), saved_image_folder+'/rec_%d.png'%iteration )
            load_params(netG, backup_para)

        if iteration % (save_interval*50) == 0 or iteration == total_iterations:
            backup_para = copy_G_params(netG)
            load_params(netG, avg_param_G)
            torch.save({'g':netG.state_dict(),'d':netD.state_dict()}, saved_model_folder+'/%d.pth'%iteration)
            load_params(netG, backup_para)
            torch.save({'g':netG.state_dict(),
                        'd':netD.state_dict(),
                        'g_ema': avg_param_G,
                        'opt_g': optimizerG.state_dict(),
                        'opt_d': optimizerD.state_dict()}, saved_model_folder+'/all_%d.pth'%iteration)

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description='region gan')

    parser.add_argument('--path', type=str, default='../lmdbs/art_landscape_1k', help='path of resource dataset, should be a folder that has one or many sub image folders inside')
    parser.add_argument('--cuda', type=int, default=1, help='index of gpu to use')
    parser.add_argument('--name', type=str, default='test_4ch_num_img_5', help='experiment name')
    parser.add_argument('--iter', type=int, default=50000, help='number of iterations')
    parser.add_argument('--start_iter', type=int, default=0, help='the iteration to start training')
    parser.add_argument('--batch_size', type=int, default=8, help='mini batch number of images')
    parser.add_argument('--im_size', type=int, default=256, help='image resolution')
    parser.add_argument('--ckpt', type=str, default='None', help='checkpoint weight path if have one')
    # new parameters- added to process 4 channels data
    parser.add_argument("--nc", type=int, default=4, help="number of channels in input images")
    parser.add_argument("--path_img", default="/work/vajira/DATA/kvasir_seg/real_images_root/real_images", help="image directory")
    parser.add_argument("--path_mask", default="/work/vajira/DATA/kvasir_seg/real_masks_root/real_masks", help = "mask directory")
    parser.add_argument("--num_imgs_to_train", default=5, type=int, help="number of samples to train. -1 for use all")


    args = parser.parse_args()
    print(args)

    train(args)