File size: 9,118 Bytes
7f49ac7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
import torch
from torch import nn
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.data.dataloader import DataLoader
from torch.utils.data import Subset
from torchvision import transforms
from torchvision import utils as vutils
import argparse
import random
from tqdm import tqdm
from models import weights_init, Discriminator, Generator
from operation import copy_G_params, load_params, get_dir
from operation import ImageFolder, InfiniteSamplerWrapper
from diffaug import DiffAugment
#Vajira
from custom_data import ImageAndMaskDataFromSinGAN
policy = 'color,translation'
import lpips
percept = lpips.PerceptualLoss(model='net-lin', net='vgg', use_gpu=True)
#torch.backends.cudnn.benchmark = True
def crop_image_by_part(image, part):
hw = image.shape[2]//2
if part==0:
return image[:,:,:hw,:hw]
if part==1:
return image[:,:,:hw,hw:]
if part==2:
return image[:,:,hw:,:hw]
if part==3:
return image[:,:,hw:,hw:]
def train_d(net, data, label="real"):
"""Train function of discriminator"""
if label=="real":
part = random.randint(0, 3)
#part = random.randint(0, 4)
pred, [rec_all, rec_small, rec_part] = net(data, label, part=part)
# new modifications
data_img = data[:,0:3, :, :]
rec_all_img = rec_all[:, 0:3, :, :]
rec_small_img = rec_small[:, 0:3, :, :]
rec_part_img = rec_part[:, 0:3, :, :]
#print("data shape=", data.shape)
#print("rec_all shape=", rec_all.shape)
err = F.relu( torch.rand_like(pred) * 0.2 + 0.8 - pred).mean() + \
percept( rec_all_img, F.interpolate(data_img, rec_all.shape[2]) ).sum() +\
percept( rec_small_img, F.interpolate(data_img, rec_small.shape[2]) ).sum() +\
percept( rec_part_img, F.interpolate(crop_image_by_part(data_img, part), rec_part.shape[2]) ).sum()
err.backward()
return pred.mean().item(), rec_all, rec_small, rec_part
else:
pred = net(data, label)
err = F.relu( torch.rand_like(pred) * 0.2 + 0.8 + pred).mean()
err.backward()
return pred.mean().item()
def train(args):
#data_root = args.path
total_iterations = args.iter
checkpoint = args.ckpt
batch_size = args.batch_size
im_size = args.im_size
ndf = 64
ngf = 64
nz = 256
nlr = 0.0002
nbeta1 = 0.5
use_cuda = True
multi_gpu = True
dataloader_workers = 8
current_iteration = 0
save_interval = 100
saved_model_folder, saved_image_folder = get_dir(args)
device = torch.device("cpu")
if use_cuda:
device = torch.device("cuda:0")
transform_list = [
transforms.Resize((int(im_size),int(im_size))),
transforms.RandomHorizontalFlip(),
#transforms.ToTensor(), # removed by Vajira, check the dataloader
#transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) # removed by Vajira, check the dataloader
]
trans = transforms.Compose(transform_list)
#if 'lmdb' in data_root:
# from operation import MultiResolutionDataset
# dataset = MultiResolutionDataset(data_root, trans, 1024)
#else:
#dataset = ImageFolder(root=data_root, transform=trans)
dataset = ImageAndMaskDataFromSinGAN(args.path_img, args.path_mask, transform=trans)
#print("dataset size=", len(dataset))
if args.num_imgs_to_train == -1 :
dataset = Subset(dataset, [i for i in range(0, len(dataset))])
else:
dataset = Subset(dataset, [i for i in range(0, args.num_imgs_to_train)]) # to control number of images to train
#print("dataset size=", len(dataset))
dataloader = iter(DataLoader(dataset, batch_size=batch_size, shuffle=False,
sampler=InfiniteSamplerWrapper(dataset), num_workers=dataloader_workers, pin_memory=True))
'''
loader = MultiEpochsDataLoader(dataset, batch_size=batch_size,
shuffle=True, num_workers=dataloader_workers,
pin_memory=True)
dataloader = CudaDataLoader(loader, 'cuda')
'''
#from model_s import Generator, Discriminator
netG = Generator(ngf=ngf, nz=nz, im_size=im_size, nc=args.nc)
netG.apply(weights_init)
netD = Discriminator(ndf=ndf, im_size=im_size, nc=args.nc)
netD.apply(weights_init)
netG.to(device)
netD.to(device)
avg_param_G = copy_G_params(netG)
fixed_noise = torch.FloatTensor(8, nz).normal_(0, 1).to(device)
if checkpoint != 'None':
ckpt = torch.load(checkpoint)
netG.load_state_dict(ckpt['g'])
netD.load_state_dict(ckpt['d'])
avg_param_G = ckpt['g_ema']
optimizerG.load_state_dict(ckpt['opt_g'])
optimizerD.load_state_dict(ckpt['opt_d'])
current_iteration = int(checkpoint.split('_')[-1].split('.')[0])
del ckpt
if multi_gpu:
netG = nn.DataParallel(netG.to(device))
netD = nn.DataParallel(netD.to(device))
optimizerG = optim.Adam(netG.parameters(), lr=nlr, betas=(nbeta1, 0.999))
optimizerD = optim.Adam(netD.parameters(), lr=nlr, betas=(nbeta1, 0.999))
for iteration in tqdm(range(current_iteration, total_iterations+1)):
real_image = next(dataloader)
real_image = real_image.to(device)
current_batch_size = real_image.size(0)
noise = torch.Tensor(current_batch_size, nz).normal_(0, 1).to(device)
fake_images = netG(noise)
real_image = DiffAugment(real_image, policy=policy)
fake_images = [DiffAugment(fake, policy=policy) for fake in fake_images]
## 2. train Discriminator
netD.zero_grad()
err_dr, rec_img_all, rec_img_small, rec_img_part = train_d(netD, real_image, label="real")
train_d(netD, [fi.detach() for fi in fake_images], label="fake")
optimizerD.step()
## 3. train Generator
netG.zero_grad()
pred_g = netD(fake_images, "fake")
err_g = -pred_g.mean()
err_g.backward()
optimizerG.step()
for p, avg_p in zip(netG.parameters(), avg_param_G):
avg_p.mul_(0.999).add_(0.001 * p.data)
if iteration % 100 == 0:
print("GAN: loss d: %.5f loss g: %.5f"%(err_dr, -err_g.item()))
if iteration % (save_interval*10) == 0:
backup_para = copy_G_params(netG)
load_params(netG, avg_param_G)
with torch.no_grad():
vutils.save_image(netG(fixed_noise)[0].add(1).mul(0.5), saved_image_folder+'/%d.png'%iteration, nrow=4)
vutils.save_image( torch.cat([
F.interpolate(real_image, 128),
rec_img_all, rec_img_small,
rec_img_part]).add(1).mul(0.5), saved_image_folder+'/rec_%d.png'%iteration )
load_params(netG, backup_para)
if iteration % (save_interval*50) == 0 or iteration == total_iterations:
backup_para = copy_G_params(netG)
load_params(netG, avg_param_G)
torch.save({'g':netG.state_dict(),'d':netD.state_dict()}, saved_model_folder+'/%d.pth'%iteration)
load_params(netG, backup_para)
torch.save({'g':netG.state_dict(),
'd':netD.state_dict(),
'g_ema': avg_param_G,
'opt_g': optimizerG.state_dict(),
'opt_d': optimizerD.state_dict()}, saved_model_folder+'/all_%d.pth'%iteration)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='region gan')
parser.add_argument('--path', type=str, default='../lmdbs/art_landscape_1k', help='path of resource dataset, should be a folder that has one or many sub image folders inside')
parser.add_argument('--cuda', type=int, default=1, help='index of gpu to use')
parser.add_argument('--name', type=str, default='test_4ch_num_img_5', help='experiment name')
parser.add_argument('--iter', type=int, default=50000, help='number of iterations')
parser.add_argument('--start_iter', type=int, default=0, help='the iteration to start training')
parser.add_argument('--batch_size', type=int, default=8, help='mini batch number of images')
parser.add_argument('--im_size', type=int, default=256, help='image resolution')
parser.add_argument('--ckpt', type=str, default='None', help='checkpoint weight path if have one')
# new parameters- added to process 4 channels data
parser.add_argument("--nc", type=int, default=4, help="number of channels in input images")
parser.add_argument("--path_img", default="/work/vajira/DATA/kvasir_seg/real_images_root/real_images", help="image directory")
parser.add_argument("--path_mask", default="/work/vajira/DATA/kvasir_seg/real_masks_root/real_masks", help = "mask directory")
parser.add_argument("--num_imgs_to_train", default=5, type=int, help="number of samples to train. -1 for use all")
args = parser.parse_args()
print(args)
train(args)
|