File size: 5,556 Bytes
425742f
 
4c0f212
425742f
 
 
 
089becf
 
 
 
 
 
 
 
 
 
 
 
4c0f212
089becf
4c0f212
089becf
4c0f212
 
089becf
4c0f212
089becf
4c0f212
425742f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
551211e
 
 
 
 
 
 
 
425742f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4896bcd
 
 
 
425742f
 
4896bcd
 
 
 
 
 
 
 
425742f
4896bcd
 
 
 
 
425742f
1712b83
425742f
4896bcd
 
 
 
 
 
 
425742f
8f1f44b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
---
language: multilingual
license: cc-by-4.0
tags:
- question-answering
datasets:
- squad_v2
model-index:
- name: deepset/xlm-roberta-large-squad2
  results:
  - task:
      type: question-answering
      name: Question Answering
    dataset:
      name: squad_v2
      type: squad_v2
      config: squad_v2
      split: validation
    metrics:
    - type: exact_match
      value: 81.8281
      name: Exact Match
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzVhZDE2NTg5NmUwOWRkMmI2MGUxYjFlZjIzNmMyNDQ2MDY2MDNhYzE0ZjY5YTkyY2U4ODc3ODFiZjQxZWQ2YSIsInZlcnNpb24iOjF9.f_rN3WPMAdv-OBPz0T7N7lOxYz9f1nEr_P-vwKhi3jNdRKp_JTy18MYR9eyJM2riKHC6_ge-8XwfyrUf51DSDA
    - type: f1
      value: 84.8886
      name: F1
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZGE5MWJmZGUxMGMwNWFhYzVhZjQwZGEwOWQ4N2Q2Yjg5NzdjNDFiNDhiYTQ1Y2E5ZWJkOTFhYmI1Y2Q2ZGYwOCIsInZlcnNpb24iOjF9.TIdH-tOx3kEMDs5wK1r6iwZqqSjNGlBrpawrsE917j1F3UFJVnQ7wJwaj0OIgmC4iw8OQeLZL56ucBcLApa-AQ
---

# Multilingual XLM-RoBERTa large for QA on various languages 

## Overview
**Language model:** xlm-roberta-large  
**Language:** Multilingual  
**Downstream-task:** Extractive QA  
**Training data:** SQuAD 2.0  
**Eval data:** SQuAD dev set - German MLQA - German XQuAD   
**Training run:** [MLFlow link](https://public-mlflow.deepset.ai/#/experiments/124/runs/3a540e3f3ecf4dd98eae8fc6d457ff20)  
**Infrastructure**: 4x Tesla v100

## Hyperparameters

```
batch_size = 32
n_epochs = 3
base_LM_model = "xlm-roberta-large"
max_seq_len = 256
learning_rate = 1e-5
lr_schedule = LinearWarmup
warmup_proportion = 0.2
doc_stride=128
max_query_length=64
``` 

## Performance
Evaluated on the SQuAD 2.0 English dev set with the [official eval script](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/).
```
  "exact": 79.45759285774446,
  "f1": 83.79259828925511,
  "total": 11873,
  "HasAns_exact": 71.96356275303644,
  "HasAns_f1": 80.6460053117963,
  "HasAns_total": 5928,
  "NoAns_exact": 86.93019343986543,
  "NoAns_f1": 86.93019343986543,
  "NoAns_total": 5945
```

Evaluated on German [MLQA: test-context-de-question-de.json](https://github.com/facebookresearch/MLQA)
```
"exact": 49.34691166703564,
"f1": 66.15582561674236,
"total": 4517,
```

Evaluated on German [XQuAD: xquad.de.json](https://github.com/deepmind/xquad)
```
"exact": 61.51260504201681,
"f1": 78.80206098332569,
"total": 1190,
```

## Usage

### In Haystack
For doing QA at scale (i.e. many docs instead of single paragraph), you can load the model also in [haystack](https://github.com/deepset-ai/haystack/):
```python
reader = FARMReader(model_name_or_path="deepset/xlm-roberta-large-squad2")
# or 
reader = TransformersReader(model="deepset/xlm-roberta-large-squad2",tokenizer="deepset/xlm-roberta-large-squad2")
```

### In Transformers
```python
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline

model_name = "deepset/xlm-roberta-large-squad2"

# a) Get predictions
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
QA_input = {
    'question': 'Why is model conversion important?',
    'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.'
}
res = nlp(QA_input)

# b) Load model & tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
```

## Authors
**Branden Chan:** branden.chan@deepset.ai    
**Timo Möller:** timo.moeller@deepset.ai      
**Malte Pietsch:** malte.pietsch@deepset.ai      
**Tanay Soni:** tanay.soni@deepset.ai    

## About us
<div class="grid lg:grid-cols-2 gap-x-4 gap-y-3">
    <div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
         <img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/deepset-logo-colored.png" class="w-40"/>
     </div>
     <div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
         <img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/haystack-logo-colored.png" class="w-40"/>
     </div>
</div>

[deepset](http://deepset.ai/) is the company behind the open-source NLP framework [Haystack](https://haystack.deepset.ai/) which is designed to help you build production ready NLP systems that use: Question answering, summarization, ranking etc.


Some of our other work: 
- [Distilled roberta-base-squad2 (aka "tinyroberta-squad2")]([https://huggingface.co/deepset/tinyroberta-squad2)
- [German BERT (aka "bert-base-german-cased")](https://deepset.ai/german-bert)
- [GermanQuAD and GermanDPR datasets and models (aka "gelectra-base-germanquad", "gbert-base-germandpr")](https://deepset.ai/germanquad)

## Get in touch and join the Haystack community

<p>For more info on Haystack, visit our <strong><a href="https://github.com/deepset-ai/haystack">GitHub</a></strong> repo and <strong><a href="https://docs.haystack.deepset.ai">Documentation</a></strong>. 

We also have a <strong><a class="h-7" href="https://haystack.deepset.ai/community">Discord community open to everyone!</a></strong></p>

[Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Discord](https://haystack.deepset.ai/community) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://deepset.ai)

By the way: [we're hiring!](http://www.deepset.ai/jobs)