File size: 2,858 Bytes
8a9d09e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
"""
This example loads the pre-trained bert-base-nli-mean-tokens models from the server.
It then fine-tunes this model for some epochs on the STS benchmark dataset.
"""
from torch.utils.data import DataLoader
import math
from sentence_transformers import SentenceTransformer,  SentencesDataset, LoggingHandler, losses
from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator
from sentence_transformers.readers import STSDataReader
import logging
from datetime import datetime


#### Just some code to print debug information to stdout
logging.basicConfig(format='%(asctime)s - %(message)s',
                    datefmt='%Y-%m-%d %H:%M:%S',
                    level=logging.INFO,
                    handlers=[LoggingHandler()])
#### /print debug information to stdout

# Read the dataset
#model_name = 'bert-base-nli-stsb-mean-tokens'
model_name = "../saved_models"
train_batch_size = 32
num_epochs = 4
model_save_path = 'output/quora_continue_training-'+model_name+'-'+datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
sts_reader = STSDataReader('../data/quora', normalize_scores=True, s1_col_idx=4, s2_col_idx=5, score_col_idx=6, max_score=1)

# Load a pre-trained sentence transformer model
model = SentenceTransformer(model_name)

# Convert the dataset to a DataLoader ready for training
logging.info("Read Quora train dataset")
train_data = SentencesDataset(sts_reader.get_examples('train.csv'), model)
train_dataloader = DataLoader(train_data, shuffle=True, batch_size=train_batch_size)
train_loss = losses.CosineSimilarityLoss(model=model)


logging.info("Read Quora dev dataset")
dev_data = SentencesDataset(examples=sts_reader.get_examples('dev.csv'), model=model)
dev_dataloader = DataLoader(dev_data, shuffle=False, batch_size=train_batch_size)
evaluator = EmbeddingSimilarityEvaluator(dev_dataloader)


# Configure the training. We skip evaluation in this example
warmup_steps = math.ceil(len(train_data)*num_epochs/train_batch_size*0.1) #10% of train data for warm-up
logging.info("Warmup-steps: {}".format(warmup_steps))


# Train the model
model.fit(train_objectives=[(train_dataloader, train_loss)],
          evaluator=evaluator,
          epochs=num_epochs,
          evaluation_steps=1000,
          warmup_steps=warmup_steps,
          output_path=model_save_path)


##############################################################################
#
# Load the stored model and evaluate its performance on STS benchmark dataset
#
##############################################################################
#
# model = SentenceTransformer(model_save_path)
# test_data = SentencesDataset(examples=sts_reader.get_examples("sts-test.csv"), model=model)
# test_dataloader = DataLoader(test_data, shuffle=False, batch_size=train_batch_size)
# evaluator = EmbeddingSimilarityEvaluator(test_dataloader)
# model.evaluate(evaluator)