File size: 5,392 Bytes
cc85cae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import os
import json
from argparse import ArgumentParser
from typing import List

import torch
import torch.distributed as dist
from transformers import AutoTokenizer
from safetensors.torch import load_model

from model import Transformer, ModelArgs


def sample(logits, temperature: float = 1.0):
    logits = logits / max(temperature, 1e-5)
    probs = torch.softmax(logits, dim=-1)
    return probs.div_(torch.empty_like(probs).exponential_(1)).argmax(dim=-1)


@torch.inference_mode()
def generate(
    model: Transformer,
    prompt_tokens: List[List[int]],
    max_new_tokens: int,
    eos_id: int,
    temperature: float = 1.0
) -> List[List[int]]:
    prompt_lens = [len(t) for t in prompt_tokens]
    assert max(prompt_lens) <= model.max_seq_len
    total_len = min(model.max_seq_len, max_new_tokens + max(prompt_lens))
    tokens = torch.full((len(prompt_tokens), total_len), -1, dtype=torch.long, device="cuda")
    for i, t in enumerate(prompt_tokens):
        tokens[i, :len(t)] = torch.tensor(t, dtype=torch.long, device="cuda")
    prev_pos = 0
    finished = torch.tensor([False] * len(prompt_tokens), device="cuda")
    prompt_mask = tokens != -1
    for cur_pos in range(min(prompt_lens), total_len):
        logits = model.forward(tokens[:, prev_pos:cur_pos], prev_pos)
        if temperature > 0:
            next_token = sample(logits, temperature)
        else:
            next_token = logits.argmax(dim=-1)
        next_token = torch.where(prompt_mask[:, cur_pos], tokens[:, cur_pos], next_token)
        tokens[:, cur_pos] = next_token
        finished |= torch.logical_and(~prompt_mask[:, cur_pos], next_token == eos_id)
        prev_pos = cur_pos
        if finished.all():
            break
    completion_tokens = []
    for i, toks in enumerate(tokens.tolist()):
        toks = toks[prompt_lens[i]:prompt_lens[i]+max_new_tokens]
        if eos_id in toks:
            toks = toks[:toks.index(eos_id)]
        completion_tokens.append(toks)
    return completion_tokens


def main(
    ckpt_path: str,
    config: str,
    input_file: str = "",
    interactive: bool = True,
    max_new_tokens: int = 100,
    temperature: float = 1.0,
) -> None:
    world_size = int(os.getenv("WORLD_SIZE", "1"))
    rank = int(os.getenv("RANK", "0"))
    local_rank = int(os.getenv("LOCAL_RANK", "0"))
    if world_size > 1:
        dist.init_process_group("nccl")
    global print
    if rank != 0:
        print = lambda *_, **__: None
    torch.cuda.set_device(local_rank)
    torch.set_default_dtype(torch.bfloat16)
    torch.set_num_threads(8)
    torch.manual_seed(965)
    with open(config) as f:
        args = ModelArgs(**json.load(f))
    print(args)
    with torch.device("cuda"):
        model = Transformer(args)
    tokenizer = AutoTokenizer.from_pretrained(ckpt_path)
    tokenizer.decode(generate(model, [tokenizer.encode("DeepSeek")], 2, -1, 1.)[0])
    load_model(model, os.path.join(ckpt_path, f"model{rank}-mp{world_size}.safetensors"))

    if interactive:
        messages = []
        while True:
            if world_size == 1:
                prompt = input(">>> ")
            elif rank == 0:
                prompt = input(">>> ")
                objects = [prompt]
                dist.broadcast_object_list(objects, 0)
            else:
                objects = [None]
                dist.broadcast_object_list(objects, 0)
                prompt = objects[0]
            if prompt == "/exit":
                break
            elif prompt == "/clear":
                messages.clear()
                continue
            messages.append({"role": "user", "content": prompt})
            prompt_tokens = tokenizer.apply_chat_template(messages, add_generation_prompt=True)
            completion_tokens = generate(model, [prompt_tokens], max_new_tokens, tokenizer.eos_token_id, temperature)
            completion = tokenizer.decode(completion_tokens[0], skip_special_tokens=True)
            print(completion)
            messages.append({"role": "assistant", "content": completion})
    else:
        with open(input_file) as f:
            prompts = [line.strip() for line in f.readlines()]
        assert len(prompts) <= args.max_batch_size
        prompt_tokens = [tokenizer.apply_chat_template([{"role": "user", "content": prompt}], add_generation_prompt=True) for prompt in prompts]
        completion_tokens = generate(model, prompt_tokens, max_new_tokens, tokenizer.eos_token_id, temperature)
        completions = tokenizer.batch_decode(completion_tokens, skip_special_tokens=True)
        for prompt, completion in zip(prompts, completions):
            print("Prompt:", prompt)
            print("Completion:", completion)
            print()

    if world_size > 1:
        dist.destroy_process_group()


if __name__ == "__main__":
    parser = ArgumentParser()
    parser.add_argument("--ckpt-path", type=str, required=True)
    parser.add_argument("--config", type=str, required=True)
    parser.add_argument("--input-file", type=str, default="")
    parser.add_argument("--interactive", action="store_true")
    parser.add_argument("--max-new-tokens", type=int, default=200)
    parser.add_argument("--temperature", type=float, default=0.2)
    args = parser.parse_args()
    assert args.input_file or args.interactive
    main(args.ckpt_path, args.config, args.input_file, args.interactive, args.max_new_tokens, args.temperature)