File size: 1,687 Bytes
ad7d208 4278464 ad7d208 4278464 ad7d208 4278464 ad7d208 4278464 ad7d208 4278464 ad7d208 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
---
license: mit
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: tweet_eval-sentiment-finetuned
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tweet_eval-sentiment-finetuned
This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6532
- Accuracy: 0.744
- F1: 0.7437
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 128
- eval_batch_size: 256
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.7491 | 1.0 | 357 | 0.6089 | 0.7345 | 0.7314 |
| 0.5516 | 2.0 | 714 | 0.5958 | 0.751 | 0.7516 |
| 0.4618 | 3.0 | 1071 | 0.6131 | 0.748 | 0.7487 |
| 0.4066 | 4.0 | 1428 | 0.6532 | 0.744 | 0.7437 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.9.1
- Datasets 2.1.0
- Tokenizers 0.12.1
|