File size: 20,815 Bytes
4fb0bd1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
from collections import defaultdict
def read_conjunctions(cfg):
conj2sent = dict()
file_path = cfg.conjunctions_file
with open(file_path, 'r') as fin:
sent = 1
currentSentText = ''
for line in fin:
if line == '\n':
sent = 1
continue
elif sent == 1:
currentSentText = line.replace('\n', '')
sent = 0
else:
conj_sent = line.replace('\n', '')
conj2sent[conj_sent] = currentSentText
conj_sentences = list(conj2sent.keys())
return conj_sentences, conj2sent
def print_predictions(outputs, file_path, vocab, sequence_label_domain=None):
"""print_predictions prints prediction results
Args:
outputs (list): prediction outputs
file_path (str): output file path
vocab (Vocabulary): vocabulary
sequence_label_domain (str, optional): sequence label domain. Defaults to None.
"""
with open(file_path, 'w') as fout:
for sent_output in outputs:
seq_len = sent_output['seq_len']
assert 'tokens' in sent_output
tokens = [vocab.get_token_from_index(token, 'tokens') for token in sent_output['tokens'][:seq_len]]
print("Token\t{}".format(' '.join(tokens)), file=fout)
if 'text' in sent_output:
print(f"Text\t{sent_output['text']}", file=fout)
if 'sequence_labels' in sent_output and 'sequence_label_preds' in sent_output:
sequence_labels = [
vocab.get_token_from_index(true_sequence_label, sequence_label_domain)
for true_sequence_label in sent_output['sequence_labels'][:seq_len]
]
sequence_label_preds = [
vocab.get_token_from_index(pred_sequence_label, sequence_label_domain)
for pred_sequence_label in sent_output['sequence_label_preds'][:seq_len]
]
print("Sequence-Label-True\t{}".format(' '.join(sequence_labels)), file=fout)
print("Sequence-Label-Pred\t{}".format(' '.join(sequence_label_preds)), file=fout)
if 'joint_label_matrix' in sent_output:
for row in sent_output['joint_label_matrix'][:seq_len]:
print("Joint-Label-True\t{}".format(' '.join(
[vocab.get_token_from_index(item, 'ent_rel_id') for item in row[:seq_len]])),
file=fout)
if 'joint_label_preds' in sent_output:
for row in sent_output['joint_label_preds'][:seq_len]:
print("Joint-Label-Pred\t{}".format(' '.join(
[vocab.get_token_from_index(item, 'ent_rel_id') for item in row[:seq_len]])),
file=fout)
if 'separate_positions' in sent_output:
print("Separate-Position-True\t{}".format(' '.join(map(str, sent_output['separate_positions']))),
file=fout)
if 'all_separate_position_preds' in sent_output:
print("Separate-Position-Pred\t{}".format(' '.join(map(str,
sent_output['all_separate_position_preds']))),
file=fout)
if 'span2ent' in sent_output:
for span, ent in sent_output['span2ent'].items():
ent = vocab.get_token_from_index(ent, 'span2ent')
assert ent != 'None', "true relation can not be `None`."
print("Ent-True\t{}\t{}\t{}".format(ent, span, ' '.join(tokens[span[0]:span[1]])), file=fout)
if 'all_ent_preds' in sent_output:
for span, ent in sent_output['all_ent_preds'].items():
# ent = vocab.get_token_from_index(ent, 'span2ent')
print("Ent-Span-Pred\t{}".format(span), file=fout)
print("Ent-Pred\t{}\t{}\t{}".format(ent, span, ' '.join(tokens[span[0]:span[1]])), file=fout)
if 'span2rel' in sent_output:
for (span1, span2), rel in sent_output['span2rel'].items():
rel = vocab.get_token_from_index(rel, 'span2rel')
assert rel != 'None', "true relation can not be `None`."
if rel[-1] == '<':
span1, span2 = span2, span1
print("Rel-True\t{}\t{}\t{}\t{}\t{}".format(rel[:-2], span1, span2,
' '.join(tokens[span1[0]:span1[1]]),
' '.join(tokens[span2[0]:span2[1]])),
file=fout)
if 'all_rel_preds' in sent_output:
for (span1, span2), rel in sent_output['all_rel_preds'].items():
# rel = vocab.get_token_from_index(rel, 'span2rel')
if rel[-1] == '<':
span1, span2 = span2, span1
print("Rel-Pred\t{}\t{}\t{}\t{}\t{}".format(rel[:-2], span1, span2,
' '.join(tokens[span1[0]:span1[1]]),
' '.join(tokens[span2[0]:span2[1]])),
file=fout)
print(file=fout)
def print_extractions_allennlp_format(cfg, outputs, file_path, vocab):
conj_sentences, conj2sent = read_conjunctions(cfg)
ext_texts = []
with open(file_path, 'w') as fout:
for sent_output in outputs:
extractions = {}
seq_len = sent_output['seq_len']
assert 'tokens' in sent_output
tokens = [vocab.get_token_from_index(token, 'tokens') for token in sent_output['tokens'][:seq_len-6]]
sentence = ' '.join(tokens)
if sentence in conj_sentences:
sentence = conj2sent[sentence]
if 'all_rel_preds' in sent_output:
for (span1, span2), rel in sent_output['all_rel_preds'].items():
if rel == '' or rel == ' ':
continue
if sent_output['all_ent_preds'][span1] == 'Relation':
try:
if span2 in extractions[span1][rel]:
continue
except:
pass
try:
extractions[span1][rel].append(span2)
except:
extractions[span1] = defaultdict(list)
extractions[span1][rel].append(span2)
else:
try:
if span1 in extractions[span2][rel]:
continue
except:
pass
try:
extractions[span2][rel].append(span1)
except:
extractions[span2] = defaultdict(list)
extractions[span2][rel].append(span1)
to_remove_rel_spans = set()
expand_rel = {}
to_add = {}
for rel_span1, d1 in extractions.items():
for rel_span2, d2 in extractions.items():
if rel_span1 != rel_span2 and not (rel_span1 in to_remove_rel_spans or rel_span2 in to_remove_rel_spans):
if d1["Subject"] == d2["Subject"] and d1["Object"] == d2["Object"]:
if rel_span1 in to_remove_rel_spans:
to_add[expand_rel[rel_span1] + rel_span2] = d1
to_remove_rel_spans.add(rel_span2)
to_remove_rel_spans.add(expand_rel[rel_span1])
expand_rel[rel_span2] = expand_rel[rel_span1] + rel_span2
expand_rel[rel_span1] = expand_rel[rel_span1] + rel_span2
elif rel_span2 in to_remove_rel_spans:
to_add[expand_rel[rel_span2] + rel_span1] = d1
to_remove_rel_spans.add(rel_span1)
to_remove_rel_spans.add(expand_rel[rel_span2])
expand_rel[rel_span1] = expand_rel[rel_span2] + rel_span1
expand_rel[rel_span2] = expand_rel[rel_span2] + rel_span1
else:
to_add[rel_span1 + rel_span2] = d1
expand_rel[rel_span1] = rel_span1 + rel_span2
expand_rel[rel_span2] = rel_span1 + rel_span2
to_remove_rel_spans.add(rel_span1)
to_remove_rel_spans.add(rel_span2)
for tm in to_remove_rel_spans:
del extractions[tm]
for k, v in to_add.items():
extractions[k] = v
for rel_sp, d in extractions.items():
if len(d["Subject"]) > 1:
sorted_d_subject = sorted(d["Subject"], key=lambda x: x[0][0])
sorted_d_subject = [x[0] for x in sorted_d_subject]
subject_text = " ".join([" ".join(tokens[sub_span[0]:sub_span[1]]) for sub_span in sorted_d_subject])
elif len(d["Subject"]) == 1:
subject_text = " ".join([" ".join(tokens[sub_span[0]:sub_span[1]]) for sub_span in d["Subject"][0]])
else:
subject_text = ""
if len(d["Object"]) > 1:
sorted_d_object = sorted(d["Object"], key=lambda x: x[0][0])
sorted_d_object = [x[0] for x in sorted_d_object]
object_text = " ".join([" ".join(tokens[sub_span[0]:sub_span[1]]) for sub_span in sorted_d_object])
elif len(d["Object"]) == 1:
object_text = " ".join([" ".join(tokens[sub_span[0]:sub_span[1]]) for sub_span in d["Object"][0]])
else:
object_text = ""
rel_text = " ".join([" ".join(tokens[sub_span[0]:sub_span[1]]) for sub_span in rel_sp]).replace('[unused1]', 'is')
ext = f'<arg1> {subject_text} </arg1> <rel> {rel_text} </rel> <arg2> {object_text} </arg2>'
if ext not in ext_texts and (rel_text != '' and subject_text != ''):
print("{}\t{}".format(sentence, ext), file=fout)
ext_texts.append(ext)
def print_predictions_for_joint_decoding(outputs, file_path, vocab):
"""print_predictions prints prediction results
Args:
outputs (list): prediction outputs
file_path (str): output file path
vocab (Vocabulary): vocabulary
sequence_label_domain (str, optional): sequence label domain. Defaults to None.
"""
with open(file_path, 'w') as fout:
for sent_output in outputs:
seq_len = sent_output['seq_len']
assert 'tokens' in sent_output
tokens = [vocab.get_token_from_index(token, 'tokens') for token in sent_output['tokens'][:seq_len]]
print("Token\t{}".format(' '.join(tokens)), file=fout)
if 'joint_label_matrix' in sent_output:
for row in sent_output['joint_label_matrix'][:seq_len]:
print("Joint-Label-True\t{}".format(' '.join(
[vocab.get_token_from_index(item, 'ent_rel_id') for item in row[:seq_len]])),
file=fout)
if 'joint_label_preds' in sent_output:
for row in sent_output['joint_label_preds'][:seq_len]:
print("Joint-Label-Pred\t{}".format(' '.join(
[vocab.get_token_from_index(item, 'ent_rel_id') for item in row[:seq_len]])),
file=fout)
if 'separate_positions' in sent_output:
print("Separate-Position-True\t{}".format(' '.join(map(str, sent_output['separate_positions']))),
file=fout)
if 'all_separate_position_preds' in sent_output:
print("Separate-Position-Pred\t{}".format(' '.join(map(str,
sent_output['all_separate_position_preds']))),
file=fout)
if 'all_ent_span_preds' in sent_output:
for span in sent_output['all_ent_span_preds']:
print("Ent-Span-Pred\t{}".format(span), file=fout)
if 'span2ent' in sent_output:
for span, ent in sent_output['span2ent'].items():
ent = vocab.get_token_from_index(ent, 'ent_rel_id')
assert ent != 'None', "true relation can not be `None`."
print("Ent-True\t{}\t{}\t{}".format(ent, span, ' '.join([' '.join(tokens[sub_span[0]:sub_span[1]]) for sub_span in span])), file=fout)
if 'all_ent_preds' in sent_output:
for span, ent in sent_output['all_ent_preds'].items():
# ent = vocab.get_token_from_index(ent, 'span2ent')
print("Ent-Pred\t{}\t{}\t{}".format(ent, span, ' '.join(
[' '.join(tokens[sub_span[0]:sub_span[1]]) for sub_span in span])), file=fout)
if 'span2rel' in sent_output:
for (span1, span2), rel in sent_output['span2rel'].items():
rel = vocab.get_token_from_index(rel, 'ent_rel_id')
assert rel != 'None', "true relation can not be `None`."
span1_text_list = [' '.join(tokens[sub_span[0]:sub_span[1]]) for sub_span in span1]
span2_text_list = [' '.join(tokens[sub_span[0]:sub_span[1]]) for sub_span in span2]
print("Rel-True\t{}\t{}\t{}\t{}\t{}".format(rel, span1, span2, ' '.join(span1_text_list),
' '.join(span2_text_list)),
file=fout)
if 'all_rel_preds' in sent_output:
for (span1, span2), rel in sent_output['all_rel_preds'].items():
# rel = vocab.get_token_from_index(rel, 'span2rel')
span1_text_list = [' '.join(tokens[sub_span[0]:sub_span[1]]) for sub_span in span1]
span2_text_list = [' '.join(tokens[sub_span[0]:sub_span[1]]) for sub_span in span2]
print("Rel-Pred\t{}\t{}\t{}\t{}\t{}".format(rel, span1, span2, ' '.join(span1_text_list),
' '.join(span2_text_list)),
file=fout)
# print("Rel-Pred\t{}\t{}\t{}\t{}\t{}".format(rel, span1, span2, ' '.join(tokens[span1[0]:span1[1]]),
# ' '.join(tokens[span2[0]:span2[1]])),
# file=fout)
print(file=fout)
def print_predictions_for_entity_rel_decoding(outputs, file_path, vocab):
"""print_predictions prints prediction results
Args:
outputs (list): prediction outputs
file_path (str): output file path
vocab (Vocabulary): vocabulary
sequence_label_domain (str, optional): sequence label domain. Defaults to None.
"""
with open(file_path, 'w') as fout:
# for sent_output, rel_sent_output in zip(outputs, rel_outputs):
for sent_output in outputs:
seq_len = sent_output['seq_len']
assert 'tokens' in sent_output
tokens = [vocab.get_token_from_index(token, 'tokens') for token in sent_output['tokens'][:seq_len]]
print("Token\t{}".format(' '.join(tokens)), file=fout)
if 'entity_label_preds' in sent_output:
for row in sent_output['entity_label_preds'][:seq_len]:
print("Ent-Label-Pred\t{}".format(' '.join(
[vocab.get_token_from_index(item, 'ent_rel_id') for item in row[:seq_len]])),
file=fout)
if 'relation_label_matrix' in sent_output:
for row in sent_output['relation_label_matrix'][:seq_len]:
print("Rel-Label-True\t{}".format(' '.join(
[vocab.get_token_from_index(item + 2, 'ent_rel_id') if item != 0 else "None" for item in row[:seq_len]])),
file=fout)
if 'relation_label_preds' in sent_output:
for row in sent_output['relation_label_preds'][:seq_len]:
print("Rel-Label-Pred\t{}".format(' '.join(
[vocab.get_token_from_index(item + 2, 'ent_rel_id') if item != 0 else "None" for item in row[:seq_len]])),
file=fout)
if 'separate_positions' in sent_output:
print("Separate-Position-True\t{}".format(' '.join(map(str, sent_output['separate_positions']))),
file=fout)
if 'all_separate_position_preds' in sent_output:
print("Separate-Position-Pred\t{}".format(' '.join(map(str,
sent_output['all_separate_position_preds']))),
file=fout)
if 'all_ent_span_preds' in sent_output:
for span in sent_output['all_ent_span_preds']:
print("Ent-Span-Pred\t{}".format(span), file=fout)
if 'span2ent' in sent_output:
for span, ent in sent_output['span2ent'].items():
ent = vocab.get_token_from_index(ent, 'ent_rel_id')
assert ent != 'None', "true relation can not be `None`."
print("Ent-True\t{}\t{}\t{}".format(ent, span, ' '.join(
[' '.join(tokens[sub_span[0]:sub_span[1]]) for sub_span in span])), file=fout)
if 'all_ent_preds' in sent_output:
for span, ent in sent_output['all_ent_preds'].items():
print("Ent-Pred\t{}\t{}\t{}".format(ent, span, ' '.join(
[' '.join(tokens[sub_span[0]:sub_span[1]]) for sub_span in span])), file=fout)
if 'span2rel' in sent_output:
for (span1, span2), rel in sent_output['span2rel'].items():
rel = vocab.get_token_from_index(rel, 'ent_rel_id')
assert rel != 'None', "true relation can not be `None`."
span1_text_list = [' '.join(tokens[sub_span[0]:sub_span[1]]) for sub_span in span1]
span2_text_list = [' '.join(tokens[sub_span[0]:sub_span[1]]) for sub_span in span2]
print("Rel-True\t{}\t{}\t{}\t{}\t{}".format(rel, span1, span2, ' '.join(span1_text_list),
' '.join(span2_text_list)),
file=fout)
if 'all_rel_preds' in sent_output:
for (span1, span2), rel in sent_output['all_rel_preds'].items():
span1_text_list = [' '.join(tokens[sub_span[0]:sub_span[1]]) for sub_span in span1]
span2_text_list = [' '.join(tokens[sub_span[0]:sub_span[1]]) for sub_span in span2]
print("Rel-Pred\t{}\t{}\t{}\t{}\t{}".format(rel, span1, span2, ' '.join(span1_text_list),
' '.join(span2_text_list)), file=fout)
print(file=fout)
def print_predictions_for_relation_decoding(outputs, file_path, vocab):
with open(file_path, 'w') as fout:
for sent_output in outputs:
seq_len = sent_output['seq_len']
assert 'tokens' in sent_output
tokens = [vocab.get_token_from_index(token, 'tokens') for token in sent_output['tokens'][:seq_len]]
print("Token\t{}".format(' '.join(tokens)), file=fout)
if 'relation_label_matrix' in sent_output:
for row in sent_output['relation_label_matrix'][:seq_len]:
print("Relation-Label-True\t{}".format(' '.join(
[vocab.get_token_from_index(item, 'ent_rel_id') for item in row[:seq_len]])),
file=fout)
if 'relation_label_preds' in sent_output:
for row in sent_output['relation_label_preds'][:seq_len]:
print("Relation-Label-Pred\t{}".format(' '.join(
[vocab.get_token_from_index(item, 'ent_rel_id') for item in row[:seq_len]])),
file=fout)
|