File size: 16,999 Bytes
4fb0bd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
import copy
import logging

import torch
import torch.nn as nn
import numpy as np

from models.embedding_models.bert_embedding_model import BertEmbedModel
from models.embedding_models.pretrained_embedding_model import PretrainedEmbedModel
from modules.token_embedders.bert_encoder import BertLinear
from collections import defaultdict
from transformers import AutoTokenizer

logger = logging.getLogger(__name__)


class EntRelJointDecoder(nn.Module):
    Argument_START_NER = '<START=Argument>'.lower()
    Argument_END_NER = '<END=Argument>'.lower()
    Relation_START_NER = '<START=Relation>'.lower()
    Relation_END_NER = '<END=Relation>'.lower()

    def __init__(self, cfg, vocab, ent_rel_file, rel_file):
        """__init__ constructs `EntRelJointDecoder` components and
        sets `EntRelJointDecoder` parameters. This class adopts a joint
        decoding algorithm for entity relation joint decoing and facilitates
        the interaction between entity and relation.

        Args:
            cfg (dict): config parameters for constructing multiple models
            vocab (Vocabulary): vocabulary
            ent_rel_file (dict): entity and relation file (joint id, entity id, relation id, symmetric id, asymmetric id)
        """

        super().__init__()
        self.auto_tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
        self.cls = self.auto_tokenizer.cls_token
        self.sep = self.auto_tokenizer.sep_token
        self.rel_file = rel_file
        self.add_marker_tokens()
        self.vocab = vocab
        self.max_span_length = cfg.max_span_length
        self.activation = nn.GELU()
        self.device = cfg.device
        self.separate_threshold = cfg.separate_threshold

        if cfg.embedding_model == 'bert':
            self.embedding_model = BertEmbedModel(cfg, vocab)
        elif cfg.embedding_model == 'pretrained':
            self.embedding_model = PretrainedEmbedModel(cfg, vocab)
        self.encoder_output_size = self.embedding_model.get_hidden_size()

        self.head_mlp = BertLinear(input_size=self.encoder_output_size,
                                   output_size=cfg.mlp_hidden_size,
                                   activation=self.activation,
                                   dropout=cfg.dropout)
        self.tail_mlp = BertLinear(input_size=self.encoder_output_size,
                                   output_size=cfg.mlp_hidden_size,
                                   activation=self.activation,
                                   dropout=cfg.dropout)

        self.U = nn.Parameter(
            torch.FloatTensor(self.vocab.get_vocab_size('ent_rel_id'), cfg.mlp_hidden_size + 1,
                              cfg.mlp_hidden_size + 1))
        self.U.data.zero_()

        if cfg.logit_dropout > 0:
            self.logit_dropout = nn.Dropout(p=cfg.logit_dropout)
        else:
            self.logit_dropout = lambda x: x

        self.none_idx = self.vocab.get_token_index('None', 'ent_rel_id')

        self.symmetric_label = torch.LongTensor(ent_rel_file["symmetric"])
        self.asymmetric_label = torch.LongTensor(ent_rel_file["asymmetric"])
        self.ent_label = torch.LongTensor(ent_rel_file["entity"])
        self.rel_label = torch.LongTensor(ent_rel_file["relation"])
        # self.rel_label = torch.LongTensor([r - 2 for r in ent_rel_file["relation"]])
        if self.device > -1:
            self.symmetric_label = self.symmetric_label.cuda(device=self.device, non_blocking=True)
            self.asymmetric_label = self.asymmetric_label.cuda(device=self.device, non_blocking=True)
            self.ent_label = self.ent_label.cuda(device=self.device, non_blocking=True)
            self.rel_label = self.rel_label.cuda(device=self.device, non_blocking=True)

        self.element_loss = nn.CrossEntropyLoss()

    def add_marker_tokens(self):
        new_tokens = ['<START>', '<END>']
        for label in self.rel_file["entity_text"]:
            new_tokens.append('<START=%s>' % label)
            new_tokens.append('<END=%s>' % label)
        self.auto_tokenizer.add_tokens(new_tokens)
        # print('# vocab after adding markers: %d'%len(tokenizer))

    def forward(self, batch_inputs, rel_model, dataset_vocab):
        """forward

        Arguments:
            batch_inputs {dict} -- batch input data

        Returns:
            dict -- results: ent_loss, ent_pred
        """

        results = {}
        batch_seq_tokens_lens = batch_inputs['tokens_lens']
        batch_tokens = batch_inputs['tokens']

        self.embedding_model(batch_inputs)
        batch_seq_tokens_encoder_repr = batch_inputs['seq_encoder_reprs']

        batch_seq_tokens_head_repr = self.head_mlp(batch_seq_tokens_encoder_repr)
        batch_seq_tokens_head_repr = torch.cat(
            [batch_seq_tokens_head_repr,
             torch.ones_like(batch_seq_tokens_head_repr[..., :1])], dim=-1)
        batch_seq_tokens_tail_repr = self.tail_mlp(batch_seq_tokens_encoder_repr)
        batch_seq_tokens_tail_repr = torch.cat(
            [batch_seq_tokens_tail_repr,
             torch.ones_like(batch_seq_tokens_tail_repr[..., :1])], dim=-1)

        batch_joint_score = torch.einsum('bxi, oij, byj -> boxy', batch_seq_tokens_head_repr, self.U,
                                         batch_seq_tokens_tail_repr).permute(0, 2, 3, 1)

        batch_normalized_joint_score = torch.softmax(
            batch_joint_score, dim=-1) * batch_inputs['joint_label_matrix_mask'].unsqueeze(-1).float()

        if not self.training:
            results['entity_label_preds'] = torch.argmax(batch_normalized_joint_score, dim=-1)

            separate_position_preds, ent_preds, rel_preds = self.soft_joint_decoding(
                batch_normalized_joint_score, rel_model, batch_tokens, batch_seq_tokens_lens, dataset_vocab)

            results['all_separate_position_preds'] = separate_position_preds
            results['all_ent_preds'] = ent_preds
            results['all_rel_preds'] = rel_preds

            return results

        results['element_loss'] = self.element_loss(
            self.logit_dropout(batch_joint_score[batch_inputs['joint_label_matrix_mask']]),
            batch_inputs['joint_label_matrix'][batch_inputs['joint_label_matrix_mask']])

        batch_symmetric_normalized_joint_score = batch_normalized_joint_score[..., self.symmetric_label]
        results['symmetric_loss'] = torch.abs(batch_symmetric_normalized_joint_score -
                                              batch_symmetric_normalized_joint_score.transpose(1, 2)).sum(
            dim=-1)[batch_inputs['joint_label_matrix_mask']].mean()

        batch_rel_normalized_joint_score = torch.max(batch_normalized_joint_score[..., self.rel_label], dim=-1).values
        batch_diag_ent_normalized_joint_score = torch.max(
            batch_normalized_joint_score[..., self.ent_label].diagonal(0, 1, 2),
            dim=1).values.unsqueeze(-1).expand_as(batch_rel_normalized_joint_score)

        results['implication_loss'] = (
                torch.relu(batch_rel_normalized_joint_score - batch_diag_ent_normalized_joint_score).sum(dim=2) +
                torch.relu(
                    batch_rel_normalized_joint_score.transpose(1, 2) - batch_diag_ent_normalized_joint_score).sum(
                    dim=2))[batch_inputs['joint_label_matrix_mask'][..., 0]].mean()

        relation_entity_mask = batch_inputs['joint_label_matrix'].diagonal(0, 1, 2)
        relation_entity_mask = torch.eq(relation_entity_mask, self.ent_label[1])

        batch_row_subject_normalized_joint_score = torch.max(batch_normalized_joint_score[..., self.rel_label[0]],
                                                             dim=-1).values
        batch_column_subject_normalized_joint_score = torch.max(
            batch_normalized_joint_score.transpose(1, 2)[..., self.rel_label[0]], dim=-1).values
        batch_row_object_normalized_joint_score = torch.max(batch_normalized_joint_score[..., self.rel_label[1]],
                                                            dim=-1).values
        batch_column_object_normalized_joint_score = torch.max(
            batch_normalized_joint_score.transpose(1, 2)[..., self.rel_label[1]], dim=-1).values

        results['triple_loss'] = (
                (torch.relu(batch_row_object_normalized_joint_score - batch_row_subject_normalized_joint_score) +
                 torch.relu(
                     batch_column_object_normalized_joint_score - batch_column_subject_normalized_joint_score)) / 2
        )[relation_entity_mask].mean()

        return results

    def soft_joint_decoding(self, batch_normalized_entity_score, rel_model, batch_tokens, batch_seq_tokens_lens,
                            dataset_vocab):
        separate_position_preds = []
        ent_preds = []
        rel_preds = []

        batch_normalized_entity_score = batch_normalized_entity_score.cpu().numpy()
        ent_label = self.ent_label.cpu().numpy()
        rel_label = self.rel_label.cpu().numpy()

        for idx, seq_len in enumerate(batch_seq_tokens_lens):
            # joint_rel_score = relation_matrix[idx][:seq_len, :seq_len, :]
            tokens = [dataset_vocab.get_token_from_index(token.item(), 'tokens') for token in
                      batch_tokens[idx][:seq_len]]

            ent_pred = {}
            rel_pred = {}
            entity_score = batch_normalized_entity_score[idx][:seq_len, :seq_len, :]
            entity_score = (entity_score + entity_score.transpose((1, 0, 2))) / 2

            entity_score_feature = entity_score.reshape(seq_len, -1)
            transposed_entity_score_feature = entity_score.transpose((1, 0, 2)).reshape(seq_len, -1)
            separate_pos = (
                    (np.linalg.norm(entity_score_feature[0:seq_len - 1] - entity_score_feature[1:seq_len], axis=1) +
                     np.linalg.norm(
                         transposed_entity_score_feature[0:seq_len - 1] - transposed_entity_score_feature[1:seq_len],
                         axis=1))
                    * 0.5 > self.separate_threshold).nonzero()[0]
            separate_position_preds.append([pos.item() for pos in separate_pos])
            if len(separate_pos) > 0:
                spans = [(0, separate_pos[0].item() + 1)] + [
                    (separate_pos[idx].item() + 1, separate_pos[idx + 1].item() + 1)
                    for idx in range(len(separate_pos) - 1)] + [(separate_pos[-1].item() + 1, seq_len)]
            else:
                spans = [(0, seq_len)]

            merged_spans = [(span,) for span in spans]
            ents = []
            relations = []
            arguments = []
            index2span = {}
            for span in merged_spans:
                target_indices = []
                for sp in span:
                    target_indices += [idx for idx in range(sp[0], sp[1])]
                score = np.mean(entity_score[target_indices, :, :][:, target_indices, :], axis=(0, 1))
                if not (np.max(score[ent_label]) < score[self.none_idx]):
                    pred = ent_label[np.argmax(score[ent_label])].item()
                    pred_label = self.vocab.get_token_from_index(pred, 'ent_rel_id')
                    if pred_label == "Relation":
                        relations.append(target_indices)
                    else:
                        arguments.append(target_indices)
                    ents.append(target_indices)
                    index2span[tuple(target_indices)] = span
                    ent_pred[span] = pred_label

            # relation decode begins
            for rel in relations:
                subj_found = False
                obj_found = False
                # if rel[-1] < seq_len - 6:
                sorted_arguments = sorted(arguments, key=lambda a: abs(a[0] - rel[0]))
                sorted_indices = [arguments.index(arg) for arg in sorted_arguments]
                argument_start_ids = [arg[0] for arg in sorted_arguments]
                argument_end_ids = [arg[-1] for arg in sorted_arguments]
                relation_indices = []
                argument_indices = []
                wordpiece_tokens = [self.cls]
                for i, token in enumerate(tokens):
                    if i == rel[0]:
                        relation_indices.append(len(wordpiece_tokens))
                        wordpiece_tokens.append(self.Relation_START_NER)
                    if i in argument_start_ids:
                        argument_indices.append(len(wordpiece_tokens))
                        wordpiece_tokens.append(self.Argument_START_NER)

                    tokenized_token = list(self.auto_tokenizer.tokenize(token))
                    wordpiece_tokens.extend(tokenized_token)
                    if i == rel[-1]:
                        wordpiece_tokens.append(self.Relation_END_NER)
                    if i in argument_end_ids:
                        wordpiece_tokens.append(self.Argument_END_NER)

                wordpiece_tokens.append(self.sep)
                wordpiece_segment_ids = [1] * (len(wordpiece_tokens))
                wordpiece_tokens = [rel_model.vocab.get_token_index(token, 'wordpiece') for token in wordpiece_tokens]
                rel_input = {
                    "wordpiece_tokens": torch.LongTensor([wordpiece_tokens]),
                    "relation_ids": torch.LongTensor([relation_indices * len(argument_indices)]),
                    "argument_ids": torch.LongTensor([argument_indices]),
                    "label_ids_mask": torch.LongTensor([[1] * len(argument_indices)]),
                    "wordpiece_segment_ids": torch.LongTensor([wordpiece_segment_ids])
                }
                output = rel_model(rel_input)
                output = output['label_preds'][0].cpu().numpy()
                sorted_output_labels = [output[i] for i in sorted_indices]
                assert len(argument_start_ids) == len(output)
                prev_subj = 0
                prev_obj = 0
                for idx, label_id in enumerate(sorted_output_labels):
                    if label_id == 0 and subj_found and obj_found:
                        break

                    pred_label = "None"
                    pred_t_label = "None"
                    score = np.mean(entity_score[rel, :, :][:, sorted_arguments[idx], :], axis=(0, 1))
                    score_t = np.mean(entity_score[sorted_arguments[idx], :, :][:, rel, :], axis=(0, 1))
                    if not (np.max(score[self.rel_label]) < score[self.none_idx]) or \
                            not (np.max(score_t[self.rel_label]) < score_t[self.none_idx]):
                        pred = rel_label[np.argmax(score[self.rel_label])].item()
                        pred_label = self.vocab.get_token_from_index(pred, 'ent_rel_id')

                        pred = rel_label[np.argmax(score_t[self.rel_label])].item()
                        pred_t_label = self.vocab.get_token_from_index(pred, 'ent_rel_id')

                    # to handle object less extractions
                    if label_id == 1 and sorted_arguments[idx][0] > rel[-1]:
                        obj_found = True
                        if (pred_label == "Object" or pred_t_label == "Object") and \
                                (not obj_found or (prev_obj != 0 and prev_obj + 1 <= sorted_arguments[idx][0] <= prev_obj + 3)):
                            rel_pred[(index2span[tuple(rel)], index2span[tuple(sorted_arguments[idx])])] = "Object"
                            prev_obj = sorted_arguments[idx][-1]
                        continue

                    # just added (maybe need to be deleted)
                    if (label_id == 2 and sorted_arguments[idx][0] < rel[0]):
                        if (pred_label == "Subject" or pred_t_label == "Subject") and \
                                (not subj_found or (prev_subj != 0 and prev_subj - 1 == sorted_arguments[idx][-1])):
                            rel_pred[(index2span[tuple(rel)], index2span[tuple(sorted_arguments[idx])])] = "Subject"
                            subj_found = True
                            prev_subj = sorted_arguments[idx][0]
                        continue

                    if label_id == 1 and (not subj_found or (
                            prev_subj != 0 and sorted_arguments[idx][-1] == prev_subj - 1)):
                        rel_pred[(index2span[tuple(rel)], index2span[tuple(sorted_arguments[idx])])] = "Subject"
                        subj_found = True
                        prev_subj = sorted_arguments[idx][0]

                    elif label_id == 2 and (not obj_found or (prev_obj != 0 and prev_obj + 1 == sorted_arguments[idx][0])):
                        rel_pred[(index2span[tuple(rel)], index2span[tuple(sorted_arguments[idx])])] = "Object"
                        obj_found = True
                        prev_obj = sorted_arguments[idx][-1]

            ent_preds.append(ent_pred)
            rel_preds.append(rel_pred)

        return separate_position_preds, ent_preds, rel_preds