File size: 9,975 Bytes
4fb0bd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import random
import logging

logger = logging.getLogger(__name__)


class Dataset():
    """This class constructs dataset for multiple date file
    """
    def __init__(self, name, instance_dict=dict()):
        """This function initializes a dataset,
        define dataset name, this dataset contains multiple readers, as datafiles.

        Arguments:
            name {str} -- dataset name

        Keyword Arguments:
            instance_dict {dict} -- instance settings (default: {dict()})
        """

        self.dataset_name = name
        self.datasets = dict()
        self.instance_dict = dict(instance_dict)

    def add_instance(self, name, instance, reader, is_count=False, is_train=False):
        """This function adds a instance to dataset

        Arguments:
            name {str} -- intance name
            instance {Instance} -- instance
            reader {DatasetReader} -- reader correspond to instance

        Keyword Arguments:
            is_count {bool} -- instance paticipates in counting or not (default: {False})
            is_train {bool} -- instance is training data or not (default: {False})
        """

        self.instance_dict[name] = {
            'instance': instance,
            'reader': reader,
            'is_count': is_count,
            'is_train': is_train
        }

    def build_dataset(self,
                      vocab,
                      counter=None,
                      min_count=dict(),
                      pretrained_vocab=None,
                      intersection_namespace=dict(),
                      no_pad_namespace=list(),
                      no_unk_namespace=list(),
                      contain_pad_namespace=dict(),
                      contain_unk_namespace=dict(),
                      tokens_to_add=None):
        """This function bulids dataset

        Arguments:
            vocab {Vocabulary} -- vocabulary

        Keyword Arguments:
            counter {dict} -- counter (default: {None})
            min_count {dict} -- min count for each namespace (default: {dict()})
            pretrained_vocab {dict} -- pretrained vocabulary (default: {None})
            intersection_namespace {dict} -- intersection vocabulary namespace correspond to
            pretrained vocabulary in case of too large pretrained vocabulary (default: {dict()})
            no_pad_namespace {list} -- no padding vocabulary namespace (default: {list()})
            no_unk_namespace {list} -- no unknown vocabulary namespace (default: {list()})
            contain_pad_namespace {dict} -- contain padding token vocabulary namespace (default: {dict()})
            contain_unk_namespace {dict} -- contain unknown token vocabulary namespace (default: {dict()})
            tokens_to_add {dict} -- tokens need to be added to vocabulary (default: {None})
        """

        # construct counter
        if counter is not None:
            for instance_name, instance_settting in self.instance_dict.items():
                if instance_settting['is_count']:
                    instance_settting['instance'].count_vocab_items(counter,
                                                                    instance_settting['reader'])

            # construct vocabulary from counter
            vocab.extend_from_counter(counter, min_count, no_pad_namespace, no_unk_namespace,
                                      contain_pad_namespace, contain_unk_namespace)

        # add extra tokens, this operation should be executeed before adding pretrained_vocab
        if tokens_to_add is not None:
            for namespace, tokens in tokens_to_add.items():
                vocab.add_tokens_to_namespace(tokens, namespace)

        # construct vocabulary from pretained vocabulary
        if pretrained_vocab is not None:
            vocab.extend_from_pretrained_vocab(pretrained_vocab, intersection_namespace,
                                               no_pad_namespace, no_unk_namespace,
                                               contain_pad_namespace, contain_unk_namespace)

        self.vocab = vocab

        for instance_name, instance_settting in self.instance_dict.items():
            instance_settting['instance'].index(self.vocab, instance_settting['reader'])
            self.datasets[instance_name] = instance_settting['instance'].get_instance()
            self.instance_dict[instance_name]['size'] = instance_settting['instance'].get_size()
            self.instance_dict[instance_name]['vocab_dict'] = instance_settting[
                'instance'].get_vocab_dict()

            logger.info("{} dataset size: {}.".format(instance_name,
                                                      self.instance_dict[instance_name]['size']))
            for key, seq_len in instance_settting['reader'].get_seq_lens().items():
                logger.info("{} dataset's {}: max_len={}, min_len={}.".format(
                    instance_name, key, max(seq_len), min(seq_len)))

    def get_batch(self, instance_name, batch_size, sort_namespace=None):
        """get_batch gets batch data and padding

        Arguments:
            instance_name {str} -- instance name
            batch_size {int} -- batch size

        Keyword Arguments:
            sort_namespace {str} -- sort samples key, meanwhile calculate sequence length if not None, while keep None means that no sorting (default: {None})

        Yields:
            int -- epoch
            dict -- batch data
        """

        if instance_name not in self.instance_dict:
            logger.error('can not find instance name {} in datasets.'.format(instance_name))
            return

        dataset = self.datasets[instance_name]

        if sort_namespace is not None and sort_namespace not in dataset:
            logger.error('can not find sort namespace {} in datasets instance {}.'.format(
                sort_namespace, instance_name))

        size = self.instance_dict[instance_name]['size']
        vocab_dict = self.instance_dict[instance_name]['vocab_dict']
        ids = list(range(size))
        if self.instance_dict[instance_name]['is_train']:
            random.shuffle(ids)
        epoch = 1
        cur = 0

        while True:
            if cur >= size:
                epoch += 1
                if not self.instance_dict[instance_name]['is_train'] and epoch > 1:
                    break
                random.shuffle(ids)
                cur = 0

            sample_ids = ids[cur:cur + batch_size]
            cur += batch_size

            if sort_namespace is not None:
                sample_ids = [(idx, len(dataset[sort_namespace][idx])) for idx in sample_ids]
                sample_ids = sorted(sample_ids, key=lambda x: x[1], reverse=True)
                sorted_ids = [idx for idx, _ in sample_ids]
            else:
                sorted_ids = sample_ids

            batch = {}

            for namespace in dataset:
                batch[namespace] = []

                if namespace in self.wo_padding_namespace:
                    for id in sorted_ids:
                        batch[namespace].append(dataset[namespace][id])
                else:
                    if namespace in vocab_dict:
                        padding_idx = self.vocab.get_padding_index(vocab_dict[namespace])
                    else:
                        padding_idx = 0

                    batch_namespace_len = [len(dataset[namespace][id]) for id in sorted_ids]
                    max_namespace_len = max(batch_namespace_len)
                    batch[namespace + '_lens'] = batch_namespace_len
                    batch[namespace + '_mask'] = []

                    if isinstance(dataset[namespace][0][0], list):
                        max_char_len = 0
                        for id in sorted_ids:
                            max_char_len = max(max_char_len,
                                               max(len(item) for item in dataset[namespace][id]))
                        for id in sorted_ids:
                            padding_sent = []
                            mask = []
                            for item in dataset[namespace][id]:
                                padding_sent.append(item + [padding_idx] *
                                                    (max_char_len - len(item)))
                                mask.append([1] * len(item) + [0] * (max_char_len - len(item)))
                            padding_sent = padding_sent + [[padding_idx] * max_char_len] * (
                                max_namespace_len - len(dataset[namespace][id]))
                            mask = mask + [[0] * max_char_len
                                           ] * (max_namespace_len - len(dataset[namespace][id]))
                            batch[namespace].append(padding_sent)
                            batch[namespace + '_mask'].append(mask)
                    else:
                        for id in sorted_ids:
                            batch[namespace].append(
                                dataset[namespace][id] + [padding_idx] *
                                (max_namespace_len - len(dataset[namespace][id])))
                            batch[namespace +
                                  '_mask'].append([1] * len(dataset[namespace][id]) + [0] *
                                                  (max_namespace_len - len(dataset[namespace][id])))

            yield epoch, batch

    def get_dataset_size(self, instance_name):
        """This function gets dataset size
        
        Arguments:
            instance_name {str} -- instance name
        
        Returns:
            int -- dataset size
        """

        return self.instance_dict[instance_name]['size']

    def set_wo_padding_namespace(self, wo_padding_namespace):
        """set_wo_padding_namespace sets without paddding namespace

        Args:
            wo_padding_namespace (list): without padding namespace
        """

        self.wo_padding_namespace = wo_padding_namespace