Text2Text Generation
Transformers
PyTorch
Safetensors
t5
text-generation-inference
Inference Endpoints
File size: 4,751 Bytes
733e9ab
 
 
 
 
 
 
 
581a5ff
 
 
733e9ab
 
f5822af
 
 
3e36cdd
840b479
 
 
 
 
 
 
 
 
 
 
733e9ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
840b479
733e9ab
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
---
license: apache-2.0
datasets:
- tatsu-lab/alpaca
---

## 🍮 🦙 Flan-Alpaca: Instruction Tuning from Humans and Machines

📣 **FLAN-T5** is also useful in text-to-audio generation. Find our work at [https://github.com/declare-lab/tango](https://github.com/declare-lab/tango) if you are interested.


Our [repository](https://github.com/declare-lab/flan-alpaca) contains code for extending the [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca)
synthetic instruction tuning to existing instruction-tuned models such as [Flan-T5](https://arxiv.org/abs/2210.11416).
We have a [live interactive demo](https://huggingface.co/spaces/joaogante/transformers_streaming) thanks to [Joao Gante](https://huggingface.co/joaogante)!
We are also benchmarking many instruction-tuned models at [declare-lab/flan-eval](https://github.com/declare-lab/flan-eval).
Our pretrained models are fully available on HuggingFace 🤗 :

| Model                                                                            | Parameters | Instruction Data                                                                                                                                   | Training GPUs   |
|----------------------------------------------------------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| [Flan-Alpaca-Base](https://huggingface.co/declare-lab/flan-alpaca-base)          | 220M       | [Flan](https://github.com/google-research/FLAN), [Alpaca](https://github.com/tatsu-lab/stanford_alpaca)                                            | 1x A6000        |
| [Flan-Alpaca-Large](https://huggingface.co/declare-lab/flan-alpaca-large)        | 770M       | [Flan](https://github.com/google-research/FLAN), [Alpaca](https://github.com/tatsu-lab/stanford_alpaca)                                            | 1x A6000        |
| [Flan-Alpaca-XL](https://huggingface.co/declare-lab/flan-alpaca-xl)              | 3B         | [Flan](https://github.com/google-research/FLAN), [Alpaca](https://github.com/tatsu-lab/stanford_alpaca)                                            | 1x A6000        |
| [Flan-Alpaca-XXL](https://huggingface.co/declare-lab/flan-alpaca-xxl)            | 11B        | [Flan](https://github.com/google-research/FLAN), [Alpaca](https://github.com/tatsu-lab/stanford_alpaca)                                            | 4x A6000 (FSDP) |
| [Flan-GPT4All-XL](https://huggingface.co/declare-lab/flan-gpt4all-xl)            | 3B         | [Flan](https://github.com/google-research/FLAN), [GPT4All](https://github.com/nomic-ai/gpt4all)                                                    | 1x A6000        |
| [Flan-ShareGPT-XL](https://huggingface.co/declare-lab/flan-sharegpt-xl)          | 3B         | [Flan](https://github.com/google-research/FLAN), [ShareGPT](https://github.com/domeccleston/sharegpt)/[Vicuna](https://github.com/lm-sys/FastChat) | 1x A6000        |
| [Flan-Alpaca-GPT4-XL*](https://huggingface.co/declare-lab/flan-alpaca-gpt4-xl)   | 3B         | [Flan](https://github.com/google-research/FLAN), [GPT4-Alpaca](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)                         | 1x A6000        |

*recommended for better performance

### Why?

[Alpaca](https://crfm.stanford.edu/2023/03/13/alpaca.html) represents an exciting new direction
to approximate the performance of large language models (LLMs) like ChatGPT cheaply and easily.
Concretely, they leverage an LLM such as GPT-3 to generate instructions as synthetic training data.
The synthetic data which covers more than 50k tasks can then be used to finetune a smaller model.
However, the original implementation is less accessible due to licensing constraints of the
underlying [LLaMA](https://ai.facebook.com/blog/large-language-model-llama-meta-ai/) model.
Furthermore, users have noted [potential noise](https://github.com/tloen/alpaca-lora/issues/65) in the synthetic
dataset. Hence, it may be better to explore a fully accessible model that is already trained on high-quality (but
less diverse) instructions such as [Flan-T5](https://arxiv.org/abs/2210.11416).

### Usage

```
from transformers import pipeline

prompt = "Write an email about an alpaca that likes flan"
model = pipeline(model="declare-lab/flan-alpaca-gpt4-xl")
model(prompt, max_length=128, do_sample=True)

# Dear AlpacaFriend,
# My name is Alpaca and I'm 10 years old.
# I'm excited to announce that I'm a big fan of flan!
# We like to eat it as a snack and I believe that it can help with our overall growth.
# I'd love to hear your feedback on this idea. 
# Have a great day! 
# Best, AL Paca
```