Antares-11b-v2 / README.md
dustydecapod's picture
Adding Evaluation Results (#1)
a2abd33 verified
|
raw
history blame
4.48 kB
metadata
license: cc-by-nc-4.0
datasets:
  - jondurbin/bagel-v0.3
base_model: decapod-research/Antares-11b-v1
model-index:
  - name: Antares-11b-v2
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 69.03
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=decapoda-research/Antares-11b-v2
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 87.54
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=decapoda-research/Antares-11b-v2
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 66.19
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=decapoda-research/Antares-11b-v2
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 59.17
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=decapoda-research/Antares-11b-v2
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 83.19
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=decapoda-research/Antares-11b-v2
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 60.5
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=decapoda-research/Antares-11b-v2
          name: Open LLM Leaderboard

Fine-tune of Upstage AI's SOLAR-10.7B-Instruct-v1.0 model, using the OpenHermes, Platypus, and Capybara datasets. Additionally fine-tuned on Jon Durbin's Bagel v0.3, plus a few unreleased datasets.

Fine-tuned on 8x4090s for 1.25 epochs.

Model Sources [optional]

  • Repository: TBD
  • Demo: TBD

Bias, Risks, and Limitations

This fine-tune has had zero alignment, safety data, or anything else shoved down it's throat.

Training Details

Training Data

See the sidebar for links to the relevant datasets.

Training Procedure

Trained using QLORA via the Axolotl tool.

Evaluation

TBD

Training procedure

The following bitsandbytes quantization config was used during training:

  • quant_method: bitsandbytes
  • load_in_8bit: False
  • load_in_4bit: True
  • llm_int8_threshold: 6.0
  • llm_int8_skip_modules: None
  • llm_int8_enable_fp32_cpu_offload: False
  • llm_int8_has_fp16_weight: False
  • bnb_4bit_quant_type: nf4
  • bnb_4bit_use_double_quant: True
  • bnb_4bit_compute_dtype: bfloat16

Framework versions

  • PEFT 0.6.0

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 70.94
AI2 Reasoning Challenge (25-Shot) 69.03
HellaSwag (10-Shot) 87.54
MMLU (5-Shot) 66.19
TruthfulQA (0-shot) 59.17
Winogrande (5-shot) 83.19
GSM8k (5-shot) 60.50