summarise_v5 / README.md
debbiesoon's picture
update model card README.md
f5f3d02
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - multi_news
model-index:
  - name: summarise_v5
    results: []

summarise_v5

This model is a fine-tuned version of allenai/led-base-16384 on the multi_news dataset. It achieves the following results on the evaluation set:

  • Loss: 2.3252
  • Rouge2 Precision: 0.1458
  • Rouge2 Recall: 0.1306
  • Rouge2 Fmeasure: 0.1343

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge2 Precision Rouge2 Recall Rouge2 Fmeasure
2.6266 0.13 10 2.4604 0.1021 0.179 0.124
2.4818 0.27 20 2.4122 0.1402 0.1422 0.1345
2.3451 0.4 30 2.3846 0.1631 0.1177 0.1307
2.4462 0.53 40 2.3584 0.1671 0.1175 0.133
2.443 0.67 50 2.3395 0.1444 0.1359 0.1344
2.3822 0.8 60 2.3377 0.1517 0.1411 0.1395
2.4304 0.93 70 2.3252 0.1458 0.1306 0.1343

Framework versions

  • Transformers 4.21.3
  • Pytorch 1.12.1+cu113
  • Datasets 2.6.2.dev0
  • Tokenizers 0.12.1