debbiesoon commited on
Commit
f5f3d02
1 Parent(s): d1497a4

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +70 -0
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - multi_news
7
+ model-index:
8
+ - name: summarise_v5
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # summarise_v5
16
+
17
+ This model is a fine-tuned version of [allenai/led-base-16384](https://huggingface.co/allenai/led-base-16384) on the multi_news dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 2.3252
20
+ - Rouge2 Precision: 0.1458
21
+ - Rouge2 Recall: 0.1306
22
+ - Rouge2 Fmeasure: 0.1343
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 5e-05
42
+ - train_batch_size: 4
43
+ - eval_batch_size: 4
44
+ - seed: 42
45
+ - gradient_accumulation_steps: 4
46
+ - total_train_batch_size: 16
47
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
48
+ - lr_scheduler_type: linear
49
+ - num_epochs: 1
50
+ - mixed_precision_training: Native AMP
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure |
55
+ |:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:|
56
+ | 2.6266 | 0.13 | 10 | 2.4604 | 0.1021 | 0.179 | 0.124 |
57
+ | 2.4818 | 0.27 | 20 | 2.4122 | 0.1402 | 0.1422 | 0.1345 |
58
+ | 2.3451 | 0.4 | 30 | 2.3846 | 0.1631 | 0.1177 | 0.1307 |
59
+ | 2.4462 | 0.53 | 40 | 2.3584 | 0.1671 | 0.1175 | 0.133 |
60
+ | 2.443 | 0.67 | 50 | 2.3395 | 0.1444 | 0.1359 | 0.1344 |
61
+ | 2.3822 | 0.8 | 60 | 2.3377 | 0.1517 | 0.1411 | 0.1395 |
62
+ | 2.4304 | 0.93 | 70 | 2.3252 | 0.1458 | 0.1306 | 0.1343 |
63
+
64
+
65
+ ### Framework versions
66
+
67
+ - Transformers 4.21.3
68
+ - Pytorch 1.12.1+cu113
69
+ - Datasets 2.6.2.dev0
70
+ - Tokenizers 0.12.1