debbiesoon's picture
update model card README.md
6ece366
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - scientific_papers
model-index:
  - name: longformer_summarise
    results: []

longformer_summarise

This model is a fine-tuned version of allenai/led-base-16384 on the scientific_papers dataset. It achieves the following results on the evaluation set:

  • Loss: 2.3003
  • Rouge2 Precision: 0.1654
  • Rouge2 Recall: 0.0966
  • Rouge2 Fmeasure: 0.1118

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge2 Precision Rouge2 Recall Rouge2 Fmeasure
2.909 0.08 10 2.8969 0.09 0.1439 0.0953
2.615 0.16 20 2.6182 0.1232 0.0865 0.0924
2.581 0.24 30 2.4687 0.1357 0.0733 0.09
2.1294 0.32 40 2.5215 0.1495 0.0932 0.1044
2.8083 0.4 50 2.3870 0.1794 0.1054 0.1224
3.0704 0.48 60 2.3676 0.1572 0.0989 0.1108
2.4716 0.56 70 2.3554 0.1707 0.1039 0.1198
2.454 0.64 80 2.3411 0.1619 0.0943 0.1115
2.3046 0.72 90 2.3105 0.1547 0.0965 0.1116
1.7467 0.8 100 2.3417 0.1551 0.0877 0.1046
2.7696 0.88 110 2.3226 0.1543 0.0954 0.1085
2.4999 0.96 120 2.3003 0.1654 0.0966 0.1118

Framework versions

  • Transformers 4.21.3
  • Pytorch 1.12.1+cu113
  • Datasets 1.2.1
  • Tokenizers 0.12.1