debbiesoon
commited on
Commit
•
6ece366
1
Parent(s):
be9b3ad
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- scientific_papers
|
7 |
+
model-index:
|
8 |
+
- name: longformer_summarise
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# longformer_summarise
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [allenai/led-base-16384](https://huggingface.co/allenai/led-base-16384) on the scientific_papers dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 2.3003
|
20 |
+
- Rouge2 Precision: 0.1654
|
21 |
+
- Rouge2 Recall: 0.0966
|
22 |
+
- Rouge2 Fmeasure: 0.1118
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training procedure
|
37 |
+
|
38 |
+
### Training hyperparameters
|
39 |
+
|
40 |
+
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 5e-05
|
42 |
+
- train_batch_size: 2
|
43 |
+
- eval_batch_size: 2
|
44 |
+
- seed: 42
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- num_epochs: 1
|
48 |
+
- mixed_precision_training: Native AMP
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure |
|
53 |
+
|:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:|
|
54 |
+
| 2.909 | 0.08 | 10 | 2.8969 | 0.09 | 0.1439 | 0.0953 |
|
55 |
+
| 2.615 | 0.16 | 20 | 2.6182 | 0.1232 | 0.0865 | 0.0924 |
|
56 |
+
| 2.581 | 0.24 | 30 | 2.4687 | 0.1357 | 0.0733 | 0.09 |
|
57 |
+
| 2.1294 | 0.32 | 40 | 2.5215 | 0.1495 | 0.0932 | 0.1044 |
|
58 |
+
| 2.8083 | 0.4 | 50 | 2.3870 | 0.1794 | 0.1054 | 0.1224 |
|
59 |
+
| 3.0704 | 0.48 | 60 | 2.3676 | 0.1572 | 0.0989 | 0.1108 |
|
60 |
+
| 2.4716 | 0.56 | 70 | 2.3554 | 0.1707 | 0.1039 | 0.1198 |
|
61 |
+
| 2.454 | 0.64 | 80 | 2.3411 | 0.1619 | 0.0943 | 0.1115 |
|
62 |
+
| 2.3046 | 0.72 | 90 | 2.3105 | 0.1547 | 0.0965 | 0.1116 |
|
63 |
+
| 1.7467 | 0.8 | 100 | 2.3417 | 0.1551 | 0.0877 | 0.1046 |
|
64 |
+
| 2.7696 | 0.88 | 110 | 2.3226 | 0.1543 | 0.0954 | 0.1085 |
|
65 |
+
| 2.4999 | 0.96 | 120 | 2.3003 | 0.1654 | 0.0966 | 0.1118 |
|
66 |
+
|
67 |
+
|
68 |
+
### Framework versions
|
69 |
+
|
70 |
+
- Transformers 4.21.3
|
71 |
+
- Pytorch 1.12.1+cu113
|
72 |
+
- Datasets 1.2.1
|
73 |
+
- Tokenizers 0.12.1
|