deansaco's picture
Upload TFRobertaForSequenceClassification
f68757e
metadata
base_model: cardiffnlp/twitter-roberta-base-sentiment-latest
tags:
  - generated_from_keras_callback
model-index:
  - name: Roberta-base-financial-sentiment-analysis
    results: []

Roberta-base-financial-sentiment-analysis

This model is a fine-tuned version of cardiffnlp/twitter-roberta-base-sentiment-latest on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0013
  • Train Accuracy: 1.0
  • Validation Loss: 0.2910
  • Validation Accuracy: 0.9431
  • Epoch: 9

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 3030, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Train Accuracy Validation Loss Validation Accuracy Epoch
0.4682 0.8080 0.3497 0.8687 0
0.1674 0.9504 0.2655 0.9064 1
0.1139 0.9681 0.2639 0.9189 2
0.0847 0.9723 0.2259 0.9334 3
0.0454 0.9876 0.2156 0.9440 4
0.0262 0.9897 0.2593 0.9344 5
0.0136 0.9963 0.3786 0.9170 6
0.0043 0.9988 0.2589 0.9488 7
0.0042 0.9988 0.2866 0.9450 8
0.0013 1.0 0.2910 0.9431 9

Framework versions

  • Transformers 4.32.0
  • TensorFlow 2.12.0
  • Datasets 2.14.4
  • Tokenizers 0.13.3